Download or read book Frontiers in Ultrafast Optics Biomedical Scientific and Industrial Applications XVII written by Alexander Heisterkamp and published by . This book was released on 2017-03-30 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.
Download or read book Frontiers in Ultrafast Optics written by Alexander Heisterkamp and published by SPIE-International Society for Optical Engineering. This book was released on 2011-01-01 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Includes Proceedings Vol. 7821
Download or read book Frontiers in Ultrafast Optics written by and published by . This book was released on 2012 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Frontiers in Ultrafast Optics Biomedical Scientific and Industrial Applications XI 23 26 January 2011 San Francisco California United States written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Frontiers in Ultrafast Optics written by Alexander Heisterkamp and published by . This book was released on 2013-04-04 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of SPIE offer access to the latest innovations in research and technology and are among the most cited references in patent literature.
Download or read book Frontiers in Ultrafast Optics written by and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Frontiers in Ultrafast Optics Biomedical Scientific and Industrial Applications XVIII written by Peter R. Herman and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Frontiers in Ultrafast Optics written by Alexander Heisterkamp and published by SPIE-International Society for Optical Engineering. This book was released on 2010-01-01 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: Includes Proceedings Vol. 7821
Download or read book Frontiers in Optics and Photonics written by Federico Capasso and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-06-08 with total page 783 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a cutting-edge research overview on the latest developments in the field of Optics and Photonics. All chapters are authored by the pioneers in their field and will cover the developments in Quantum Photonics, Optical properties of 2D Materials, Optical Sensors, Organic Opto-electronics, Nanophotonics, Metamaterials, Plasmonics, Quantum Cascade lasers, LEDs, Biophotonics and biomedical photonics and spectroscopy.
Download or read book Ultrashort Pulse Laser Technology written by Stefan Nolte and published by Springer. This book was released on 2015-10-19 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ultrashort laser pulses with durations in the femtosecond range up to a few picoseconds provide a unique method for precise materials processing or medical applications. Paired with the recent developments in ultrashort pulse lasers, this technology is finding its way into various application fields. The book gives a comprehensive overview of the principles and applications of ultrashort pulse lasers, especially applied to medicine and production technology. Recent advances in laser technology are discussed in detail. This covers the development of reliable and cheap low power laser sources as well as high average power ultrashort pulse lasers for large scale manufacturing. The fundamentals of laser-matter-interaction as well as processing strategies and the required system technology are discussed for these laser sources with respect to precise materials processing. Finally, different applications within medicine, measurement technology or materials processing are highlighted.
Download or read book Frontiers in Ultrafast Optics written by Alexander Heisterkamp and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Artificial Intelligence in Label free Microscopy written by Ata Mahjoubfar and published by Springer. This book was released on 2017-04-19 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces time-stretch quantitative phase imaging (TS-QPI), a high-throughput label-free imaging flow cytometer developed for big data acquisition and analysis in phenotypic screening. TS-QPI is able to capture quantitative optical phase and intensity images simultaneously, enabling high-content cell analysis, cancer diagnostics, personalized genomics, and drug development. The authors also demonstrate a complete machine learning pipeline that performs optical phase measurement, image processing, feature extraction, and classification, enabling high-throughput quantitative imaging that achieves record high accuracy in label -free cellular phenotypic screening and opens up a new path to data-driven diagnosis.
Download or read book Femtosecond Laser Micromachining written by Roberto Osellame and published by Springer Science & Business Media. This book was released on 2012-03-05 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Femtosecond laser micromachining of transparent material is a powerful and versatile technology. In fact, it can be applied to several materials. It is a maskless technology that allows rapid device prototyping, has intrinsic three-dimensional capabilities and can produce both photonic and microfluidic devices. For these reasons it is ideally suited for the fabrication of complex microsystems with unprecedented functionalities. The book is mainly focused on micromachining of transparent materials which, due to the nonlinear absorption mechanism of ultrashort pulses, allows unique three-dimensional capabilities and can be exploited for the fabrication of complex microsystems with unprecedented functionalities.This book presents an overview of the state of the art of this rapidly emerging topic with contributions from leading experts in the field, ranging from principles of nonlinear material modification to fabrication techniques and applications to photonics and optofluidics.
Download or read book Handbook of Silicon Based MEMS Materials and Technologies written by Markku Tilli and published by Elsevier. This book was released on 2020-04-17 with total page 1028 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Silicon Based MEMS Materials and Technologies, Third Edition is a comprehensive guide to MEMS materials, technologies, and manufacturing with a particular emphasis on silicon as the most important starting material used in MEMS. The book explains the fundamentals, properties (mechanical, electrostatic, optical, etc.), materials selection, preparation, modeling, manufacturing, processing, system integration, measurement, and materials characterization techniques of MEMS structures. The third edition of this book provides an important up-to-date overview of the current and emerging technologies in MEMS making it a key reference for MEMS professionals, engineers, and researchers alike, and at the same time an essential education material for undergraduate and graduate students. - Provides comprehensive overview of leading-edge MEMS manufacturing technologies through the supply chain from silicon ingot growth to device fabrication and integration with sensor/actuator controlling circuits - Explains the properties, manufacturing, processing, measuring and modeling methods of MEMS structures - Reviews the current and future options for hermetic encapsulation and introduces how to utilize wafer level packaging and 3D integration technologies for package cost reduction and performance improvements - Geared towards practical applications presenting several modern MEMS devices including inertial sensors, microphones, pressure sensors and micromirrors
Download or read book State of the Art of Quantum Dot System Fabrications written by Ameenah Al-Ahmadi and published by BoD – Books on Demand. This book was released on 2012-06-13 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book "State-of-the-art of Quantum Dot System Fabrications" contains ten chapters and devotes to some of quantum dot system fabrication methods that considered the dependence of shape, size and composition parameters on growth methods and conditions such as temperature, strain and deposition rates. This is a collaborative book sharing and providing fundamental research such as the one conducted in Physics, Chemistry, Material Science, with a base text that could serve as a reference in research by presenting up-to-date research work on the field of quantum dot systems.
Download or read book Robotic Nondestructive Testing Technology written by Chunguang Xu and published by CRC Press. This book was released on 2022-09-27 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: The content of this book includes a variety of nondestructive testing (NDT) methods, with many introductions to testing and application cases. The book proposes new ultrasonic testing technology for complex workpieces. It is hard for traditional NDT technology to realize the automatic detection of complex curved components, especially the automatic high-precision nondestructive detection of curved-surface components with variable curvature, variable thickness and complex contour. Therefore, the robotic NDT technique as a combination of manipulator technique and NDT technique can further improve the efficiency and accuracy of NDT. Robotic NDT Technique combines the physical principle of nondestructive testing with the flexible motion control of spatial attitude of articulated manipulator. With NDT as the constraint, it controls the motion attitude and azimuth angle of a transmitting and receiving transducer. Thus traditional NDT technique has developed from plane to curved surface, from 2D to many dimensions and from artificiality to intelligence, into a unique and systematic interdisciplinary robotic NDT technique.
Download or read book Birefringence and Bragg grating control in femtosecond laser written optical circuits written by and published by Luis Andre Fernandes. This book was released on 2012-12-31 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis, femtosecond lasers are explored for the fabrication of fiber Bragg gratings (FBGs) in suspended core fibers (SCFs) as well as direct writing of integrated optical devices in bulk fused silica glass. The FBGs fabricated in suspended core fibers with different core geometries were demonstrated with femtosecond laser exposure through a Talbot interferometer. In this case, the use of a femtosecond laser system was crucial as it eliminates the need for the use of photosensitive fibers, which is the case for SCFs, while the Talbot interferometry setup provided flexibility in the definition of the grating periodicity, while simultaneously protecting the optical components used in the fabrication process from the high intensities reached during exposure in the proximity of the fibers. These Bragg gratings were employed to show simultaneous strain and temperature sensing. Using a femtosecond laser direct writing system, novel point-by-point fabrication arrangements, with detailed attention to the computer controlled laser beam modulation, were developed in order to correctly introduce modulation of the refractive index profile during the waveguide fabrication process. This technique enabled the development of phase and frequency control required for advanced Bragg grating waveguide (BGW) fabrication and arbitrary spectral shaping. Procedures were demonstrated for the fabrication of chirped and phased shifted BGWs for applications in temporal pulse shaping and spectral shaping that showed significantly improved feature resolutions for sensing applications. The BGWs were used as a practical sensitive tool to determine and study the waveguide birefringence inherent to the nonlinear absorption processes typical of femtosecond laser-material interaction. The control of form and stress birefringence was developed in order to accomplish the fabrication of integrated optical components for polarization control, like guided wave retarders and polarization beam splitters. Tuning of this waveguide birefringence was achieved by the introduction of stress inducing laser modification tracks that enabled the ability to both enhance or reduce the inherent birefringence. Characterization techniques were developed for the absolute determination of the birefringence based on BGWs spectrum splitting, together with crossed polarizer measurements, while novel data analysis procedures were demonstrated for the study of polarization dependent and polarization independent directional couplers with the introduction of a polarization splitting ratio which is wavelength and coupling length dependent. All of the improvements made in the understanding of waveguide birefringence control provided increased flexibility to simultaneously fabricate low polarization mode dispersion circuits, as well as more efficient and compact polarization dependent devices. The polarization aspects detailed here, together with the point-by-point fabrication system, may be further developed in the future towards the fabrication of more complex integrated devices that combine spectral, temporal, and polarization control, all achievable with the same femtosecond laser writing system. These flexible processing techniques will open new directions for writing additional functionalities in optical circuits with more compact three-dimensional geometries.