EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book From Genetics to Mathematics

Download or read book From Genetics to Mathematics written by Miroslaw Lachowicz and published by World Scientific. This book was released on 2009 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains pedagogical and elementary introductions to genetics for mathematicians and physicists as well as to mathematical models and techniques of population dynamics. It also offers a physicist''s perspective on modeling biological processes. Each chapter starts with an overview followed by the recent results obtained by authors. Lectures are self-contained and are devoted to various phenomena such as the evolution of the genetic code and genomes, age-structured populations, demography, sympatric speciation, the Penna model, Lotka-Volterra and other predator-prey models, evolutionary models of ecosystems, extinctions of species, and the origin and development of language. Authors analyze their models from the computational and mathematical points of view.

Book Foundations of Mathematical Genetics

Download or read book Foundations of Mathematical Genetics written by Anthony William Fairbank Edwards and published by Cambridge University Press. This book was released on 2000-01-13 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: A definitive account of the origins of modern mathematical population genetics, first published in 2000.

Book Mathematical and Statistical Methods for Genetic Analysis

Download or read book Mathematical and Statistical Methods for Genetic Analysis written by Kenneth Lange and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written to equip students in the mathematical siences to understand and model the epidemiological and experimental data encountered in genetics research. This second edition expands the original edition by over 100 pages and includes new material. Sprinkled throughout the chapters are many new problems.

Book From Genetics to Mathematics

Download or read book From Genetics to Mathematics written by Miros?aw Lachowicz and published by World Scientific. This book was released on 2009 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains pedagogical and elementary introductions to genetics for mathematicians and physicists as well as to mathematical models and techniques of population dynamics. It also offers a physicist's perspective on modeling biological processes. Each chapter starts with an overview followed by the recent results obtained by authors. Lectures are self-contained and are devoted to various phenomena such as the evolution of the genetic code and genomes, age-structured populations, demography, sympatric speciation, the Penna model, LotkaVolterra and other predator-prey models, evolutionary models of ecosystems, extinctions of species, and the origin and development of language. Authors analyze their models from the computational and mathematical points of view.

Book Mathematical Population Genetics 1

Download or read book Mathematical Population Genetics 1 written by Warren J. Ewens and published by Springer Science & Business Media. This book was released on 2004-01-09 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first of a planned two-volume work discussing the mathematical aspects of population genetics with an emphasis on evolutionary theory. This volume draws heavily from the author’s 1979 classic, but it has been revised and expanded to include recent topics which follow naturally from the treatment in the earlier edition, such as the theory of molecular population genetics.

Book Some Mathematical Models from Population Genetics

Download or read book Some Mathematical Models from Population Genetics written by Alison Etheridge and published by Springer Science & Business Media. This book was released on 2011-01-07 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work reflects sixteen hours of lectures delivered by the author at the 2009 St Flour summer school in probability. It provides a rapid introduction to a range of mathematical models that have their origins in theoretical population genetics. The models fall into two classes: forwards in time models for the evolution of frequencies of different genetic types in a population; and backwards in time (coalescent) models that trace out the genealogical relationships between individuals in a sample from the population. Some, like the classical Wright-Fisher model, date right back to the origins of the subject. Others, like the multiple merger coalescents or the spatial Lambda-Fleming-Viot process are much more recent. All share a rich mathematical structure. Biological terms are explained, the models are carefully motivated and tools for their study are presented systematically.

Book Mathematical Structures in Population Genetics

Download or read book Mathematical Structures in Population Genetics written by Yuri I. Lyubich and published by Springer. This book was released on 2011-12-14 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical methods have been applied successfully to population genet ics for a long time. Even the quite elementary ideas used initially proved amazingly effective. For example, the famous Hardy-Weinberg Law (1908) is basic to many calculations in population genetics. The mathematics in the classical works of Fisher, Haldane and Wright was also not very complicated but was of great help for the theoretical understanding of evolutionary pro cesses. More recently, the methods of mathematical genetics have become more sophisticated. In use are probability theory, stochastic processes, non linear differential and difference equations and nonassociative algebras. First contacts with topology have been established. Now in addition to the tra ditional movement of mathematics for genetics, inspiration is flowing in the opposite direction, yielding mathematics from genetics. The present mono grapll reflects to some degree both patterns but especially the latter one. A pioneer of this synthesis was S. N. Bernstein. He raised-and partially solved- -the problem of characterizing all stationary evolutionary operators, and this work was continued by the author in a series of papers (1971-1979). This problem has not been completely solved, but it appears that only cer tain operators devoid of any biological significance remain to be addressed. The results of these studies appear in chapters 4 and 5. The necessary alge braic preliminaries are described in chapter 3 after some elementary models in chapter 2.

Book Information Geometry and Population Genetics

Download or read book Information Geometry and Population Genetics written by Julian Hofrichter and published by Springer. This book was released on 2017-02-23 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and beautiful mathematical structure, which is uncovered here in a systematic manner. In addition to approaches by means of analysis, combinatorics and PDE, a geometric perspective is brought in through Amari's and Chentsov's information geometry. This concept allows us to calculate many quantities of interest systematically; likewise, the employed global perspective elucidates the stratification of the model in an unprecedented manner. Furthermore, the links to statistical mechanics and large deviation theory are explored and developed into powerful tools. Altogether, the manuscript provides a solid and broad working basis for graduate students and researchers interested in this field.

Book Nonlinear PDEs

    Book Details:
  • Author : Marius Ghergu
  • Publisher : Springer Science & Business Media
  • Release : 2011-10-21
  • ISBN : 3642226647
  • Pages : 402 pages

Download or read book Nonlinear PDEs written by Marius Ghergu and published by Springer Science & Business Media. This book was released on 2011-10-21 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications related to phenomena such as: boundary layer phenomena for viscous fluids, population dynamics,, dead core phenomena, etc. It addresses researchers and post-graduate students working at the interplay between mathematics and other fields of science and technology and is a comprehensive introduction to the theory of nonlinear partial differential equations and its main principles also presents their real-life applications in various contexts: mathematical physics, chemistry, mathematical biology, and population genetics. Based on the authors' original work, this volume provides an overview of the field, with examples suitable for researchers but also for graduate students entering research. The method of presentation appeals to readers with diverse backgrounds in partial differential equations and functional analysis. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. The content demonstrates in a firm way that partial differential equations can be used to address a large variety of phenomena occurring in and influencing our daily lives. The extensive reference list and index make this book a valuable resource for researchers working in a variety of fields and who are interested in phenomena modeled by nonlinear partial differential equations.​

Book Probability and Mathematical Genetics

Download or read book Probability and Mathematical Genetics written by N. H. Bingham and published by Cambridge University Press. This book was released on 2010-07-15 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on the work of Sir John Kingman, one of the world's leading researchers in probability and mathematical genetics, this book touches on the important areas of these subjects in the last 50 years. Leading authorities give a unique insight into a wide range of currently topical problems. Papers in probability concentrate on combinatorial and structural aspects, in particular exchangeability and regeneration. The Kingman coalescent links probability with mathematical genetics and is fundamental to the study of the latter. This has implications across the whole of genomic modeling including the Human Genome Project. Other papers in mathematical population genetics range from statistical aspects including heterogeneous clustering, to the assessment of molecular variability in cancer genomes. Further papers in statistics are concerned with empirical deconvolution, perfect simulation, and wavelets. This book will be warmly received by established experts as well as their students and others interested in the content.

Book Mathematical Models in Biology

Download or read book Mathematical Models in Biology written by Valeria Zazzu and published by Springer. This book was released on 2015-11-26 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an exciting collection of contributions based on the workshop “Bringing Maths to Life” held October 27-29, 2014 in Naples, Italy. The state-of-the art research in biology and the statistical and analytical challenges facing huge masses of data collection are treated in this Work. Specific topics explored in depth surround the sessions and special invited sessions of the workshop and include genetic variability via differential expression, molecular dynamics and modeling, complex biological systems viewed from quantitative models, and microscopy images processing, to name several. In depth discussions of the mathematical analysis required to extract insights from complex bodies of biological datasets, to aid development in the field novel algorithms, methods and software tools for genetic variability, molecular dynamics, and complex biological systems are presented in this book. Researchers and graduate students in biology, life science, and mathematics/statistics will find the content useful as it addresses existing challenges in identifying the gaps between mathematical modeling and biological research. The shared solutions will aid and promote further collaboration between life sciences and mathematics.

Book Mathematical Population Genetics 1

Download or read book Mathematical Population Genetics 1 written by Warren J. Ewens and published by Springer Science & Business Media. This book was released on 2012-10-01 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first of a planned two-volume work discussing the mathematical aspects of population genetics with an emphasis on evolutionary theory. This volume draws heavily from the author’s 1979 classic, but it has been revised and expanded to include recent topics which follow naturally from the treatment in the earlier edition, such as the theory of molecular population genetics.

Book Mathematics of Bioinformatics

Download or read book Mathematics of Bioinformatics written by Matthew He and published by John Wiley & Sons. This book was released on 2011-03-16 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Bioinformatics: Theory, Methods, and Applications provides a comprehensive format for connecting and integrating information derived from mathematical methods and applying it to the understanding of biological sequences, structures, and networks. Each chapter is divided into a number of sections based on the bioinformatics topics and related mathematical theory and methods. Each topic of the section is comprised of the following three parts: an introduction to the biological problems in bioinformatics; a presentation of relevant topics of mathematical theory and methods to the bioinformatics problems introduced in the first part; an integrative overview that draws the connections and interfaces between bioinformatics problems/issues and mathematical theory/methods/applications.

Book The Math Gene

    Book Details:
  • Author : Keith Devlin
  • Publisher : Basic Books
  • Release : 2001-05-17
  • ISBN : 0786725087
  • Pages : 348 pages

Download or read book The Math Gene written by Keith Devlin and published by Basic Books. This book was released on 2001-05-17 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: If people are endowed with a "number instinct" similar to the "language instinct" -- as recent research suggests -- then why can't everyone do math? In The Math Gene, mathematician and popular writer Keith Devlin attacks both sides of this question. Devlin offers a breathtakingly new theory of language development that describes how language evolved in two stages and how its main purpose was not communication. Devlin goes on to show that the ability to think mathematically arose out of the same symbol-manipulating ability that was so crucial to the very first emergence of true language. Why, then, can't we do math as well as we speak? The answer, says Devlin, is that we can and do -- we just don't recognize when we're using mathematical reasoning.

Book Mathematical and Statistical Methods for Genetic Analysis

Download or read book Mathematical and Statistical Methods for Genetic Analysis written by Kenneth Lange and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geneticists now stand on the threshold of sequencing the genome in its entirety. The unprecedented insights into human disease and evolution offered by mapping and sequencing are transforming medicine and agriculture. This revolution depends vitally on the contributions made by applied mathematicians, statisticians, and computer scientists. Kenneth Lange has written a book to enable graduate students in the mathematical sciences to understand and model the epidemiological and experimental data encountered in genetics research. Mathematical, statistical, and computational principles relevant to this task are developed hand-in-hand with applications to gene mapping, risk prediction, and the testing of epidemiological hypotheses. The book covers many topics previously only accessible in journal articles, such as pedigree analysis algorithms, Markov chain, Monte Carlo methods, reconstruction of evolutionary trees, radiation hybrid mapping, and models of recombination. The whole is backed by numerous exercise sets.

Book 100 Most Important Science Ideas

Download or read book 100 Most Important Science Ideas written by Mark Henderson and published by . This book was released on 2011 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: 100 Most Important Science Ideas presents a selection of 100 key concepts in science in a series of concise and accessible essays that are understandable to the layperson. The authors explain the answers to the most exciting and important scientific questions, which have had a profound influence on our way of life. Helpful diagrams, everyday examples and enlightening quotations highlight the straightforward text. All the big ideas that readers would expect to find are present, and each is discussed over two to four pages. The authors use concrete applications to describe many of the abstract ideas, and some entries have a timeline along the bottom showing when the idea originated and its development. Examples are: What can DNA reveal about the history of human evolution? Why does the moon orbit the Earth while the Earth orbits the sun? How will genetic medicine revolutionize healthcare? How did chaos theory become so ordered? 100 Most Important Science Ideas also includes brief biographies of iconic scientists and entertaining anecdotes from the world of scientific discovery. It is an indispensable overview of science for anyone who wants to understand the world around them.

Book Population Genetics of Multiple Loci

Download or read book Population Genetics of Multiple Loci written by Freddy B. Christiansen and published by . This book was released on 2000-01-10 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Population Genetics of Multiple Loci F. B. Christiansen University of Aarhus, Denmark "This is a very beautiful and powerful study of an area that Christiansen has dominated for many years." - Marcus Feldman, Stanford University, USA Population genetics thrives on the constant interaction between theoretical and empirical knowledge. In the first instance, population genetics was developed using one-locus, two-allele models for genetic variation. The simplicity of these models opened up theoretical developments in population and evolutionary genetics to biologists without specialist training in mathematics. Population genetics of multi-allelic loci is more complex and requires more mathematical insight, and its study is predominantly undertaken by mathematical biologists. Traditional formulations of multi-locus theory do not simplify by assuming two alleles per locus. In this elegant presentation the author provides a formulation of multi-locus population genetics that retains the simplicity of two-allele models. * Provides an accessible and natural extension of classical population genetics to multiple loci * Exposes the population genetic aspects of sexual reproduction * Describes the complexity of evolutionary interactions among genes * Provides the background for insight into the functioning of genetic algorithms applied in computer science * Written by a world leader in the field The book is divided into two main sections. Part I - Recombination and Segregation - includes coverage of random mating, inbreeding, migration and mixing. Part II - Selection - covers numerous phenomena involving natural selection including viability, fertility, mutation and migration. The author has successfully presented the theory in a way that is intelligible to anyone with a reasonably good background in basic mathematics and is devoted to learning multiple loci population genetics. The text is primarily aimed at advanced undergraduate and postgraduate students and researchers interested in genetics and population biology. It is also essential reading for those working or researching in biomathematics and adaptive computing.