EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Practical Approach to Fracture Mechanics

Download or read book A Practical Approach to Fracture Mechanics written by Jorge Luis González-Velázquez and published by Elsevier. This book was released on 2020-10-08 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Practical Approach to Fracture Mechanics provides a concise overview on the fundamental concepts of fracture mechanics, discussing linear elastic fracture mechanics, fracture toughness, ductile fracture, slow crack propagation, structural integrity, and more. The book outlines analytical and experimental methods for determining the fracture resistance of mechanical and structural components, also demonstrating the use of fracture mechanics in failure analysis, reinforcement of cracked structures, and remaining life estimation. The characteristics of crack propagation induced by fatigue, stress-corrosion, creep, and absorbed hydrogen are also discussed. The book concludes with a chapter on the structural integrity analysis of cracked components alongside a real integrity assessment. This book will be especially useful for students in mechanical, civil, industrial, metallurgical, aeronautical and chemical engineering, and for professional engineers looking for a refresher on core principles. - Concisely outlines the underlying fundamentals of fracture mechanics, making physical concepts clear and simple and providing easily-understood applied examples - Includes solved problems of the most common calculations, along with step-by-step procedures to perform widely-used methods in fracture mechanics - Demonstrates how to determine stress intensity factors and fracture toughness, estimate crack growth rate, calculate failure load, and other methods and techniques

Book Fracture Mechanics

Download or read book Fracture Mechanics written by Chin-Teh Sun and published by Academic Press. This book was released on 2011-10-14 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: From a leading expert in fracture mechanics, this text provides new approaches and new applications to advance the understanding of crack formation and propagation.

Book Finite Elements in Fracture Mechanics

Download or read book Finite Elements in Fracture Mechanics written by Meinhard Kuna and published by Springer Science & Business Media. This book was released on 2013-07-19 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fracture mechanics has established itself as an important discipline of growing interest to those working to assess the safety, reliability and service life of engineering structures and materials. In order to calculate the loading situation at cracks and defects, nowadays numerical techniques like finite element method (FEM) have become indispensable tools for a broad range of applications. The present monograph provides an introduction to the essential concepts of fracture mechanics, its main goal being to procure the special techniques for FEM analysis of crack problems, which have to date only been mastered by experts. All kinds of static, dynamic and fatigue fracture problems are treated in two- and three-dimensional elastic and plastic structural components. The usage of the various solution techniques is demonstrated by means of sample problems selected from practical engineering case studies. The primary target group includes graduate students, researchers in academia and engineers in practice.

Book Introduction to Fracture Mechanics

Download or read book Introduction to Fracture Mechanics written by Robert O. Ritchie and published by Elsevier. This book was released on 2021-06-23 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Fracture Mechanics presents an introduction to the origins, formulation and application of fracture mechanics for the design, safe operation and life prediction in structural materials and components. The book introduces and informs the reader on how fracture mechanics works and how it is so different from other forms of analysis that are used to characterize mechanical properties. Chapters cover foundational topics and the use of linear-elastic fracture mechanics, involving both K-based characterizing parameter and G-based energy approaches, and how to characterize the fracture toughness of materials under plane-strain and non plane-strain conditions using the notion of crack-resistance or R-curves. Other sections cover far more complex nonlinear-elastic fracture mechanics based on the use of the J-integral and the crack-tip opening displacement. These topics largely involve continuum mechanics descriptions of crack initiation, slow crack growth, eventual instability by overload fracture, and subcritical cracking. Presents how, for a given material, a fracture toughness value can be measured on a small laboratory sample and then used directly to predict the failure (by fracture, fatigue, creep, etc.) of a much larger structure in service Covers the rudiments of fracture mechanics from the perspective of the philosophy underlying the few principles and the many assumptions that form the basis of the discipline Provides readers with a "working knowledge" of fracture mechanics, describing its potency for damage-tolerant design, for preventing failures through appropriate life-prediction strategies, and for quantitative failure analysis (fracture diagnostics)

Book Fracture Mechanics Test Methods For Concrete

Download or read book Fracture Mechanics Test Methods For Concrete written by Surendra Shah and published by CRC Press. This book was released on 1991-03-07 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compares currently used methods in determining concrete toughness and presents recommended test procedures with theories and models for describing cracking and fracturing phenomena. Effects of loading rate, temperature and humidity are also examined. Well referenced and illustrated, this book is filled with practical technical information for materials and structural engineers.

Book Fracture Mechanics

    Book Details:
  • Author : Surjya Kumar Maiti
  • Publisher : Cambridge University Press
  • Release : 2015-10-01
  • ISBN : 1316691837
  • Pages : 302 pages

Download or read book Fracture Mechanics written by Surjya Kumar Maiti and published by Cambridge University Press. This book was released on 2015-10-01 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fracture mechanics studies the development and spreading of cracks in materials. The study uses two techniques including analytical and experimental solid mechanics. The former is used to determine the driving force on a crack and the latter is used to measure material's resistance to fracture. The text begins with a detailed discussion of fundamental concepts including linear elastic fracture mechanics (LEFM), yielding fracture mechanics, mixed mode fracture and computational aspects of linear elastic fracture mechanics. It explains important topics including Griffith theory of brittle crack propagation and its Irwin and Orowan modification, calculation of theoretical cohesive strength of materials through an atomic model and analytical determination of crack tip stress field. This book covers MATLAB programs for calculating fatigue life under variable amplitude cyclic loading. The experimental measurements of fracture toughness parameters KIC, JIC and crack opening displacement (COD) are provided in the last chapter.

Book Modelling Rock Fracturing Processes

Download or read book Modelling Rock Fracturing Processes written by Baotang Shen and published by Springer Science & Business Media. This book was released on 2013-10-07 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text book provides the theoretical background of rock fracture mechanics and displacement discontinuity methods used for the modelling of geomechanical problems. The computer program FRACOD is used to analyse the fracture problems, assessing fracture initiation and propagation in tension (Mode I), shear (Mode II) and mixed mode I and II of solid intact or jointed geomaterials. The book also presents the fundamentals of thermo-mechanical coupling and hydro-mechanical coupling. Formulations of multiple regional mechanical, thermal and hydraulic functions, which allow analyses of fracture mechanics problems for structures made of brittle, rock-like materials, are provided. In addition, instructive examples of code verification and applications are presented. Additional material: The 2-D version of the FRACOD program, a manual on the program and a wealth of verification examples of classical problems in physics, mechanics and hydromechanics are available at http://extras.springer.com. A large number of applications related to civil, mining, petroleum and environmental engineering are also included. - The first textbook available on modelling of rock fracture propagation - Introduces readers to the fundamentals of rock fracturing - Uses a modern style of teaching with theory, mathematical modelling and applications in one package - The basic version of the FRACOD software, manual, verification examples and applications are available as additional material - The FRACOD program and manual enable the readers to solve fracture propagation problems on their own --------------------------- Ki-Bok Min, Department of Energy Resources Engineering, College of Engineering, Seoul National University, Korea “Challenging rock engineering applications require extreme conditions of stress, temperature and hydraulic pressure resulting in rock fracturing to a various extent. The FRACOD is one of few computer codes available in engineering rock mechanics that can simulate the initiation and propagation of fractures often interacting with natural fractures. Its capability has been significantly enhanced to include the hydraulic and thermal fracturing with concerted interaction from multi-national research and industry partners. My experience with the FRACOD is very positive and I am certain that its already-excellent track record will expand further in the future."

Book Models and Phenomena in Fracture Mechanics

Download or read book Models and Phenomena in Fracture Mechanics written by Leonid I. Slepyan and published by Springer Science & Business Media. This book was released on 2012-11-07 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting the most important results, methods, and open questions, this book describes and compares advanced models in fracture mechanics. The author introduces the required mathematical technique, mainly the theory of analytical functions, from scratch.

Book Practical Fracture Mechanics in Design

Download or read book Practical Fracture Mechanics in Design written by Arun Shukla and published by CRC Press. This book was released on 2004-12-14 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theoretical treatments of fracture mechanics abound in the literature. Among the first books to address this vital topic from an applied standpoint was the first edition of Practical Fracture Mechanics in Design. Completely updated and expanded to reflect recent developments in the field, the second edition of this valuable reference concisely revi

Book Fracture Mechanics and Crack Growth

Download or read book Fracture Mechanics and Crack Growth written by Naman Recho and published by John Wiley & Sons. This book was released on 2012-12-27 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent advances related to the following two topics: how mechanical fields close to material or geometrical singularities such as cracks can be determined; how failure criteria can be established according to the singularity degrees related to these discontinuities. Concerning the determination of mechanical fields close to a crack tip, the first part of the book presents most of the traditional methods in order to classify them into two major categories. The first is based on the stress field, such as the Airy function, and the second resolves the problem from functions related to displacement fields. Following this, a new method based on the Hamiltonian system is presented in great detail. Local and energetic approaches to fracture are used in order to determine the fracture parameters such as stress intensity factor and energy release rate. The second part of the book describes methodologies to establish the critical fracture loads and the crack growth criteria. Singular fields for homogeneous and non-homogeneous problems near crack tips, v-notches, interfaces, etc. associated with the crack initiation and propagation laws in elastic and elastic-plastic media, allow us to determine the basis of failure criteria. Each phenomenon studied is dealt with according to its conceptual and theoretical modeling, to its use in the criteria of fracture resistance; and finally to its implementation in terms of feasibility and numerical application. Contents 1. Introduction. Part 1: Stress Field Analysis Close to the Crack Tip 2. Review of Continuum Mechanics and the Behavior Laws. 3. Overview of Fracture Mechanics. 4. Fracture Mechanics. 5. Introduction to the Finite Element Analysis of Cracked Structures. Part 2: Crack Growth Criteria 6. Crack Propagation. 7. Crack Growth Prediction in Elements of Steel Structures Submitted to Fatigue. 8. Potential Use of Crack Propagation Laws in Fatigue Life Design.

Book Methods of Analysis and Solutions of Crack Problems

Download or read book Methods of Analysis and Solutions of Crack Problems written by George C. Sih and published by Springer Science & Business Media. This book was released on 1973-01-31 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is weH known that the traditional failure criteria cannot adequately explain failures which occur at a nominal stress level considerably lower than the ultimate strength of the material. The current procedure for predicting the safe loads or safe useful life of a structural member has been evolved around the discipline oflinear fracture mechanics. This approach introduces the concept of a crack extension force which can be used to rank materials in some order of fracture resistance. The idea is to determine the largest crack that a material will tolerate without failure. Laboratory methods for characterizing the fracture toughness of many engineering materials are now available. While these test data are useful for providing some rough guidance in the choice of materials, it is not clear how they could be used in the design of a structure. The understanding of the relationship between laboratory tests and fracture design of structures is, to say the least, deficient. Fracture mechanics is presently at astandstill until the basic problems of scaling from laboratory models to fuH size structures and mixed mode crack propagation are resolved. The answers to these questions require some basic understanding ofthe theory and will not be found by testing more specimens. The current theory of fracture is inadequate for many reasons. First of aH it can only treat idealized problems where the applied load must be directed normal to the crack plane.

Book Numerical Fracture Mechanics

    Book Details:
  • Author : M.H. Aliabadi
  • Publisher : Springer Science & Business Media
  • Release : 1991-07-31
  • ISBN : 9780792311751
  • Pages : 296 pages

Download or read book Numerical Fracture Mechanics written by M.H. Aliabadi and published by Springer Science & Business Media. This book was released on 1991-07-31 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to present, describe and demonstrate the use of numerical methods in solving crack problems in fracture mechanics. The text concentrates, to a large extent, on the application of the Boundary Element Method (BEM) to fracture mechanics, although an up-to-date account of recent advances in other numerical methods such as the Finite Element Method is also presented. The book is an integrated presentation of modem numerical fracture mechanics, it contains a compilation of the work of many researchers as well as accounting for some of authors' most recent work on the subject. It is hoped that this book will bridge the gap that exists between specialist books on theoretical fracture mechanics on one hand, and texts on numerical methods on the other. Although most of the methods presented are the latest developments in the field of numerical fracture mechanics, the authors have also included some simple techniques which are essential for understanding the physical principles that govern crack problems in general. Different numerical techniques are described in detail and where possible simple examples are included, as well as test results for more complicated problems. The book consists of six chapters. The first chapter initially describes the historical development of theoretical fracture mechanics, before proceeding to present the basic concepts such as energy balance, stress intensity factors, residual strength and fatigue crack growth as well as briefly describing the importance of stress intensity factors in corrosion and residual stress cracking.

Book Boundary Element Analysis in Computational Fracture Mechanics

Download or read book Boundary Element Analysis in Computational Fracture Mechanics written by T.A. Cruse and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Boundary Integral Equation (BIE) method has occupied me to various degrees for the past twenty-two years. The attraction of BIE analysis has been its unique combination of mathematics and practical application. The EIE method is unforgiving in its requirement for mathe matical care and its requirement for diligence in creating effective numerical algorithms. The EIE method has the ability to provide critical inSight into the mathematics that underlie one of the most powerful and useful modeling approximations ever devised--elasticity. The method has even revealed important new insights into the nature of crack tip plastic strain distributions. I believe that EIE modeling of physical problems is one of the remaining opportunities for challenging and fruitful research by those willing to apply sound mathematical discipline coupled with phys ical insight and a desire to relate the two in new ways. The monograph that follows is the summation of many of the successes of that twenty-two years, supported by the ideas and synergisms that come from working with individuals who share a common interest in engineering mathematics and their application. The focus of the monograph is on the application of EIE modeling to one of the most important of the solid mechanics disciplines--fracture mechanics. The monograph is not a trea tise on fracture mechanics, as there are many others who are far more qualified than I to expound on that topic.

Book Fracture Mechanics

    Book Details:
  • Author : Surjya Kumar Maiti
  • Publisher : Cambridge University Press
  • Release : 2015-10
  • ISBN : 1107096766
  • Pages : 301 pages

Download or read book Fracture Mechanics written by Surjya Kumar Maiti and published by Cambridge University Press. This book was released on 2015-10 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book offers detailed treatment on fundamental concepts of fracture mechanics. The text is useful for undergraduate students, graduate students and researchers.

Book The Life of Cracks

Download or read book The Life of Cracks written by Srečko Glodež and published by Cambridge Scholars Publishing. This book was released on 2020-07-13 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many people find the concept of fracture and damage mechanics to be somewhat problematic, mainly because, until recently, close attention in mechanics was focused especially on the strength and resistance of materials. In this sense, to speak of fracture is as uncomfortable for some as it is to speak of a deadly disease. In confronting and preventing a fatal disease, one must understand its complexity, symptoms, and behavior; by the same token, in securing the strength of an engineering structure, one must understand the reasons and type of its potential failure. This book will provide knowledge and insights on this matter to its readers.

Book Fracture Mechanics of Concrete

Download or read book Fracture Mechanics of Concrete written by Surendra P. Shah and published by John Wiley & Sons. This book was released on 1995-09-28 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: FRACTURE MECHANICS OF CONCRETE AND ROCK This book offers engineers a unique opportunity to learn, frominternationally recognized leaders in their field, about the latesttheoretical advances in fracture mechanics in concrete, reinforcedconcrete structures, and rock. At the same time, it functions as asuperb, graduate-level introduction to fracture mechanics conceptsand analytical techniques. Reviews, in depth, the basic theory behind fracture mechanics * Covers the application of fracture mechanics to compressionfailure, creep, fatigue, torsion, and other advanced topics * Extremely well researched, applies experimental evidence ofdamage to a wide range of design cases * Supplies all relevant formulas for stress intensity * Covers state-of-the-art linear elastic fracture mechanics (LEFM)techniques for analyzing deformations and cracking * Describes nonlinear fracture mechanics (NLFM) and the latestRILEM modeling techniques for testing nonlinear quasi-brittlematerials * And much more Over the past few years, researchers employing techniques borrowedfrom fracture mechanics have made many groundbreaking discoveriesconcerning the causes and effects of cracking, damage, andfractures of plain and reinforced concrete structures and rock.This, in turn, has resulted in the further development andrefinement of fracture mechanics concepts and tools. Yet, despitethe field's growth and the growing conviction that fracturemechanics is indispensable to an understanding of material andstructural failure, there continues to be a surprising shortage oftextbooks and professional references on the subject. Written by two of the foremost names in the field, FractureMechanics of Concrete fills that gap. The most comprehensive bookever written on the subject, it consolidates the latest theoreticalresearch from around the world in a single reference that can beused by students and professionals alike. Fracture Mechanics of Concrete is divided into two sections. In thefirst, the authors lay the necessary groundwork with an in-depthreview of fundamental principles. In the second section, theauthors vividly demonstrate how fracture mechanics has beensuccessfully applied to failures occurring in a wide array ofdesign cases. Key topics covered in these sections include: * State-of-the-art linear elastic fracture mechanics (LEFM)techniques for analyzing deformations and cracking * Nonlinear fracture mechanics (NLFM) and the latest RILEM modelingtechniques for testing nonlinear quasi-brittle materials * The use of R-Curves to describe cracking and fracture inquasi-brittle materials * The application of fracture mechanics to compression failure,creep, fatigue, torsion, and other advanced topics The most timely, comprehensive, and authoritative book on thesubject currently available, Fracture Mechanics of Concrete is botha complete instructional tool for academics and students instructural and geotechnical engineering courses, and anindispensable working resource for practicing engineers.

Book Dynamic Fracture Mechanics

Download or read book Dynamic Fracture Mechanics written by Arun Shukla and published by World Scientific. This book was released on 2006 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering a wide variety of topics in dynamic fracture mechanics, this volume presents state-of-the-art experimental techniques and theoretical analysis on dynamic fracture in standard and exotic materials. Written by world renowned researchers, this valuable compendium contains eleven chapters on crack initiation, crack propagation, crack arrest, crack-stress wave interactions, and experimental, analytical and numerical methods in dynamic fracture mechanics. Contents: Modeling Dynamic Fracture Using Large-Scale Atomistic Simulations (H-J Gao & M J Buehler); Dynamic Crack Initiation Toughness (D Rittel); The Dynamics of Rapidly Moving Tensile Cracks in Brittle Amorphous Material (J Fineberg); Optical Methods for Dynamic Fracture Mechanics (H V Tippur); On the Use of Strain Gages in Dynamic Fracture (V Parameswaran & A Shukla); Dynamic and Crack Arrest Fracture Toughness (R E Link & R Chona); Dynamic Fracture in Graded Materials (A Shukla & N Jain); Dynamic Fracture Initiation Toughness at Elevated Temperatures with Application to the New Generation of Titanium Aluminides Alloys (M Shazly et al.); Dynamic Fracture of Nanocomposite Materials (A Shukla et al.). Readership: Researchers, practitioners, and graduate students in fracture mechanics and materials science.