EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Four bar Mechanism Fatigue Test Stand Design for a Wind Turbine Blade Model

Download or read book Four bar Mechanism Fatigue Test Stand Design for a Wind Turbine Blade Model written by Simon Armando Gonzalez and published by . This book was released on 1994 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Characterization of a Mobile Oscillatory Fatigue Operator for Wind Turbine Blade Testing

Download or read book Characterization of a Mobile Oscillatory Fatigue Operator for Wind Turbine Blade Testing written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Laboratory testing of wind turbine blades is required to meet wind turbine design standards, reduce machine cost, and reduce the technical and fi nancial risks of deploying mass-produced wind turbine models. Fatigue testing at the National Wind Technology Center (NWTC) is currently conducted using Universal Resonance Excitation (UREX) technology. In a UREX test, the blade is mounted to a rigid stand and hydraulic exciters mounted to the blade are used to excite the blade to its resonant frequency. A drawback to UREX technology is that mounting hydraulic systems to the blade is diffi cult and requires a relatively long set-up period. An alternative testing technology called the Mobile Oscillatory Fatigue Operator (MOFO) has been analyzed. The MOFO uses an oscillating blade test-stand rather than a rigid stand, avoiding the need to place hydraulic systems on the blade. The MOFO will be demonstrated by converting an existing test-stand at the NWTC to an oscillating stand that can test blades up to 25 m in length. To obtain the loads necessary to design the MOFO, the system motion is modeled using rigid body and lumped mass dynamics models. Preliminary modeling indicates the existing stand can be converted to a MOFO relatively easily. However, the blade dynamic models suggest that blade bending moment distributions are signifi cantly different for UREX and MOFO testing; more sophisticated models are required to assess the implication of this difference on the accuracy of the test.

Book Optimization of Wind Turbine Blade Fatigue Test Design

Download or read book Optimization of Wind Turbine Blade Fatigue Test Design written by David Lopez Rodriguez and published by . This book was released on 2017 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Assessment of Research Needs for Wind Turbine Rotor Materials Technology

Download or read book Assessment of Research Needs for Wind Turbine Rotor Materials Technology written by Committee on Assessment of Research Needs for Wind Turbine Rotor Materials Technology and published by National Academies Press. This book was released on 1991-01-15 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind-driven power systems represent a renewable energy technology. Arrays of interconnected wind turbines can convert power carried by the wind into electricity. This book defines a research and development agenda for the U.S. Department of Energy's wind energy program in hopes of improving the performance of this emerging technology.

Book Fatigue Test Design

Download or read book Fatigue Test Design written by Nathan Post and published by . This book was released on 2016 with total page 77 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current practice in commercial certification of wind turbine blades is to perform separate flap and lead-lag fatigue tests. The National Renewable Energy Laboratory has been researching and evaluating biaxial fatigue testing techniques and demonstrating various options, typically on smaller-scale test articles at the National Wind Technology Center. This report evaluates some of these biaxial fatigue options in the context of application to a multimegawatt blade certification test program at the Wind Technology Testing Center in Charlestown, Massachusetts.

Book Advances in wind turbine blade design and materials

Download or read book Advances in wind turbine blade design and materials written by R.P.L. Nijssen and published by Elsevier Inc. Chapters. This book was released on 2013-10-31 with total page 43 pages. Available in PDF, EPUB and Kindle. Book excerpt: Composites have been the material of choice for wind turbine blade construction for several decades. This chapter explains why. It also shows how wind turbine blade materials and our understanding of their fatigue behaviour have developed recently, and the gaps that still exist in the knowledge. The chapter discusses why fatigue is a predominant design driver for wind turbine blades. The main structural elements of the blade (load bearing components and aerodynamic shell) are considered in terms of material and design requirements, and fundamental research questions are addressed. Finally, there is a comment on current and future trends, as well as a list of recommended reading.

Book Fatigue Test Design  Scenarios for Biaxial Fatigue Testing of a 60 Meter Wind Turbine Blade

Download or read book Fatigue Test Design Scenarios for Biaxial Fatigue Testing of a 60 Meter Wind Turbine Blade written by and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current practice in commercial certification of wind turbine blades is to perform separate flap and lead-lag fatigue tests. The National Renewable Energy Laboratory has been researching and evaluating biaxial fatigue testing techniques and demonstrating various options, typically on smaller-scale test articles at the National Wind Technology Center. This report evaluates some of these biaxial fatigue options in the context of application to a multimegawatt blade certification test program at the Wind Technology Testing Center in Charlestown, Massachusetts.

Book Fatigue Data Editing for Blades of Horizontal Axis Wind Turbines

Download or read book Fatigue Data Editing for Blades of Horizontal Axis Wind Turbines written by Pratumnopharat Panu and published by LAP Lambert Academic Publishing. This book was released on 2015-11-12 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: In predicting performance of wind turbines, the blade element momentum (BEM) theory is still commonly used by wind turbine designers and researchers. This book deals with several up-to-date models added to the BEM theory to get more realistic prediction. In evaluating fatigue damage of wind turbine blade, stress-life approach and Miner's linear cumulative damage rule are mentioned. Wind turbine blades are the most critical components of HAWT. Full-scale blade fatigue testing is required to verify that the blades possess the strength and service life specified in the design. Unfortunately, the test must be run for a long time period. This problem led the blade testing laboratories to accelerate fatigue testing time. To achieve the objective, two novel methods called STFT- and WT-based fatigue damage part extracting methods are used to generate the edited stress-time history. Blade testing laboratories can use this history to accelerate fatigue testing time. STFT- and WT-based fatigue damage part extracting methods proposed in this book are suggested as alternative methods in accelerating fatigue testing time, especially for the field of wind turbine engineering.

Book Advances in wind turbine blade design and materials

Download or read book Advances in wind turbine blade design and materials written by A.P. Vassilopoulos and published by Elsevier Inc. Chapters. This book was released on 2013-10-31 with total page 55 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fatigue life prediction of wind turbine rotor blades is a very challenging task, as blade failure is led by different failure types that act synergistically. Inherent defects like wrinkles, fiber misalignments and voids, that can be introduced during fabrication, can constitute potential damage initiation points and rapidly develop to failure mechanisms like matrix cracking, transverse-ply cracking, interface cracking, debonding, fiber breakage, etc. Different methods have been established to address this problem, some based on phenomenological and others on actual damage mechanics modeling. This chapter aims to provide an overview of fatigue life modeling and prediction methodologies for the composite materials and structural composite elements that compose a wind turbine rotor blade under complex loading conditions.

Book Advances in wind turbine blade design and materials

Download or read book Advances in wind turbine blade design and materials written by J.F. Mandell and published by Elsevier Inc. Chapters. This book was released on 2013-10-31 with total page 53 pages. Available in PDF, EPUB and Kindle. Book excerpt: This chapter explores the influence of resin and reinforcing fabric variations on the fatigue sensitivity for a wide range of typical blade laminates reported recently in the SNL/MSU/DOE database. Test results are presented for static and fatigue property variations with resin type, reinforcing fabric construction and weight, fiber content and laminate construction. Critical resin/fabric interactions and damage mechanisms are identified. The effects of resin and fiber type are also explored for material transitions at ply drops, where ply delamination is the dominant damage.

Book Advances in wind turbine blade design and materials

Download or read book Advances in wind turbine blade design and materials written by J.J. Heijdra and published by Elsevier Inc. Chapters. This book was released on 2013-10-31 with total page 21 pages. Available in PDF, EPUB and Kindle. Book excerpt: International safety and design standards for structural performance analysis require full-scale testing of each wind turbine blade prototype and of blades that have undergone major design changes. The purpose of blade testing is to demonstrate that the blade design and production are such that the blade possesses the intended strength and service life. Full-scale testing can be seen as final design verification that also checks the assumptions used in the design. In this chapter, aspects of full-scale blade testing are considered in the practical context of the blade test laboratory. An overview is given of the tests which make up the complete test program, the loads used for each and the equipment and instrumentation used.

Book Biaxial Dynamic Fatigue Tests of Wind Turbine Blades

Download or read book Biaxial Dynamic Fatigue Tests of Wind Turbine Blades written by Falko Bürkner and published by Fraunhofer Verlag. This book was released on 2021-04-09 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: Testing rotor blades of wind turbines is essential to mitigate financial risks caused by serial damages. Present day uniaxial dynamic tests are time consuming and often inaccurate regarding the applied loading. This thesis proposes a faster fatigue test method by loading the two primary directions at the same time. In addition, a more realistic test, compared to uniaxial tests, is accomplished by loading larger areas of the blade cross-sections. To achieve this, an elliptical biaxial dynamic excitation is used. To fulfill the industry requirement for cost effective tests, a relatively simple test setup was developed, still achieving an elliptical dynamic excitation of the rotor blade. Two methods for an accurate determination of the applied loadings for dynamic fatigue tests are described. These calibration tests use easily measured values and simple analysis to achieve accurate test load measurements in a cost-effective way.

Book Fatigue Analysis and Testing of Wind Turbine Blades

Download or read book Fatigue Analysis and Testing of Wind Turbine Blades written by Peter Robert Greaves and published by . This book was released on 2013 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract:This thesis focuses on fatigue analysis and testing of large, multi MW wind turbine blades. The blades are one of the most expensive components of a wind turbine, and their mass has cost implications for the hub, nacelle, tower and foundations of the turbine so it is important that they are not unnecessarily strong. Fatigue is often an important design driver, but fatigue of composites is poorly understood and so large safety factors are often applied to the loads. This has implications for the weight of the blade. Full scale fatigue testing of blades is required by the design standards, and provides manufacturers with confidence that the blade will be able to survive its service life. This testing is usually performed by resonating the blade in the flapwise and edgewise directions separately, but in service these two loads occur at the same time. A fatigue testing method developed at Narec (the National Renewable Energy Centre) in the UK in which the flapwise and edgewise directions are excited simultaneously has been evaluated by comparing the Palmgren-Miner damage sum around the blade cross section after testing with the damage distribution caused by the service life. A method to obtain the resonant test configuration that will result in the optimum mode shapes for the flapwise and edgewise directions was then developed, and simulation software was designed to allow the blade test to be simulated so that realistic comparisons between the damage distributions after different test types could be obtained. During the course of this work the shortcomings with conventional fatigue analysis methods became apparent, and a novel method of fatigue analysis based on multi-continuum theory and the kinetic theory of fracture was developed. This method was benchmarked using physical test data from the OPTIDAT database and was applied to the analysis of a complete blade. A full scale fatigue test method based on this new analysis approach is also discussed.

Book Wind Energy Explained

Download or read book Wind Energy Explained written by James F. Manwell and published by John Wiley & Sons. This book was released on 2010-09-14 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind energy’s bestselling textbook- fully revised. This must-have second edition includes up-to-date data, diagrams, illustrations and thorough new material on: the fundamentals of wind turbine aerodynamics; wind turbine testing and modelling; wind turbine design standards; offshore wind energy; special purpose applications, such as energy storage and fuel production. Fifty additional homework problems and a new appendix on data processing make this comprehensive edition perfect for engineering students. This book offers a complete examination of one of the most promising sources of renewable energy and is a great introduction to this cross-disciplinary field for practising engineers. “provides a wealth of information and is an excellent reference book for people interested in the subject of wind energy.” (IEEE Power & Energy Magazine, November/December 2003) “deserves a place in the library of every university and college where renewable energy is taught.” (The International Journal of Electrical Engineering Education, Vol.41, No.2 April 2004) “a very comprehensive and well-organized treatment of the current status of wind power.” (Choice, Vol. 40, No. 4, December 2002)

Book A Full scale Fatigue Test of 9 m CX 10 Wind Turbine Blades

Download or read book A Full scale Fatigue Test of 9 m CX 10 Wind Turbine Blades written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in Wind Turbine Blade Design and Materials

Download or read book Advances in Wind Turbine Blade Design and Materials written by Povl Brondsted and published by Elsevier. This book was released on 2013-10-31 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind energy is gaining critical ground in the area of renewable energy, with wind energy being predicted to provide up to 8% of the world's consumption of electricity by 2021. Advances in wind turbine blade design and materials reviews the design and functionality of wind turbine rotor blades as well as the requirements and challenges for composite materials used in both current and future designs of wind turbine blades.Part one outlines the challenges and developments in wind turbine blade design, including aerodynamic and aeroelastic design features, fatigue loads on wind turbine blades, and characteristics of wind turbine blade airfoils. Part two discusses the fatigue behavior of composite wind turbine blades, including the micromechanical modelling and fatigue life prediction of wind turbine blade composite materials, and the effects of resin and reinforcement variations on the fatigue resistance of wind turbine blades. The final part of the book describes advances in wind turbine blade materials, development and testing, including biobased composites, surface protection and coatings, structural performance testing and the design, manufacture and testing of small wind turbine blades.Advances in wind turbine blade design and materials offers a comprehensive review of the recent advances and challenges encountered in wind turbine blade materials and design, and will provide an invaluable reference for researchers and innovators in the field of wind energy production, including materials scientists and engineers, wind turbine blade manufacturers and maintenance technicians, scientists, researchers and academics. - Reviews the design and functionality of wind turbine rotor blades - Examines the requirements and challenges for composite materials used in both current and future designs of wind turbine blades - Provides an invaluable reference for researchers and innovators in the field of wind energy production

Book Reliability based Design Optimization of Composite Wind Turbine Blades for Fatigue Life Under Wind Load Uncertainty

Download or read book Reliability based Design Optimization of Composite Wind Turbine Blades for Fatigue Life Under Wind Load Uncertainty written by Weifei Hu and published by . This book was released on 2015 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objectives of this study are (1) to develop an accurate and efficient fatigue analysis procedure that can be used in reliability analysis and reliability-based design optimization (RBDO) of composite wind turbine blades; (2) to develop a wind load uncertainty model that provides realistic uncertain wind load for the reliability analysis and the RBDO process; and (3) to obtain an optimal composite wind turbine blade that satisfies target reliability for durability under the uncertain wind load. The current research effort involves: (1) developing an aerodynamic analysis method that can effectively calculate detailed wind pressure on the blade surface for stress analysis; (2) developing a fatigue failure criterion that can cope with non-proportional multi-axial stress states in composite wind turbine blades; (3) developing a wind load uncertainty model that represents realistic uncertain wind load for fatigue reliability of wind turbine systems; (4) applying the wind load uncertainty model into a composite wind turbine blade and obtaining an RBDO optimum design that satisfies a target probability of failure for a lifespan of 20 years under wind load uncertainty. In blade fatigue analysis, resultant aerodynamic forces are usually applied at the aerodynamic centers of the airfoils of a blade to calculate stress/strain. However, in reality the wind pressures are applied on the blade surface. A wind turbine blade is often treated as a typical beam-like structure for which fatigue life calculations are limited in the edge-wise and/or flap-wise direction(s). Using the beam-like structure, existing fatigue analysis methods for composite wind turbine blades cannot cope with the non-proportional multi-axial stress states that are endured by wind turbine blades during operation.