Download or read book Fluctuation Theory of Phase Transitions written by A. Z. Patashinskij and published by . This book was released on 1979 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Fluctuation Theory of Phase Transitions written by Aleksandr Zakharovich Patashinskiĭ and published by Pergamon. This book was released on 1979 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Fluctuations Instabilities and Phase Transitions written by T. Riste and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the papers presented at the NATO Advanced Study Institute held at Geilo, Norway, 11th - 20th April 1975. The institute was the third in a row devoted to phase transitions. The previous two dealt with 2nd- and 1st-order transitions in equilibrium systems and the proceedings have been published.i~ In order to make an overlap wi th those institutes, the first part of this institute was devoted to 1st -or der transitions with an emphasis on the problems of metast abi l i t y and instability en countered i n spinodal decomposition, nucleation etc. The main topic was, however, that of non-equilibrium systems, and the present institute was to our knowledge the first one devoted to the physics of such systems. The discovery of the analogy between phase transitions in equilibrium systems and instabilities in non-equilibrium systems was first made by Rolf Landauer in 1961 and later independently by others. The analogy was first pointed out for electronic devices (tunnel diodes, Gunn oscillators, lasers, etc. ) and the treatment of hydrodynamic instabilities followed later.
Download or read book Theory of Fluctuations in Superconductors written by Anatoly Larkin and published by OUP Oxford. This book was released on 2005-01-13 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a complete encyclopedia of superconducting fluctuations, summarising the last thirty-five years of work in the field. The first part of the book is devoted to an extended discussion of the Ginzburg-Landau phenomenology of fluctuations in its thermodynamical and time-dependent versions and its various applications. The second part deals with microscopic justification of the Ginzburg-Landau approach and presents the diagrammatic theory of fluctuations. The third part is devoted to a less-detailed review of the manifestation of fluctuations in observables: diamagnetism, magnetoconductivity, various tunneling characteristics, thermoelectricity, and NMR relaxation. The final chapters turn to the manifestation of fluctuations in unconventional superconducting systems: nanodrops, nanorings, Berezinsky-Kosterlitz-Thouless state, quantum phase transition between superconductor and insulator, and thermal and quantum fluctuations in weak superconducting systems. The book ends with a brief discussion on theories of high temperature superconductivity, where fluctuations appear as the possible protagonist of this exciting phenomenon.
Download or read book Reconstructive Phase Transitions written by Pierre Toldano and published by World Scientific. This book was released on 1996 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the phenomenological theory of first-order structural phase transitions, with a special emphasis on reconstructive transformations in which a group-subgroup relationship between the symmetries of the phases is absent. It starts with a unified presentation of the current approach to first-order phase transitions, using the more recent results of the Landau theory of phase transitions and of the theory of singularities. A general theory of reconstructive phase transitions is then formulated, in which the structures surrounding a transition are expressed in terms of density-waves, providing a natural definition of the transition order-parameters, and a description of the corresponding phase diagrams and relevant physical properties. The applicability of the theory is illustrated by a large number of concrete examples pertaining to the various classes of reconstructive transitions: allotropic transformations of the elements, displacive and order-disorder transformations in metals, alloys and related structures, crystal-quasicrystal transformations.
Download or read book Structural Phase Transitions in Layered Transition Metal Compounds written by K. Motizuki and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: The structural phase transition is one of the most fundamental problems in solid state physics. Layered transition-metal dichalcogenides provide us with a most exciting area for the study of structural phase transitions that are associated with the charge density wave (CDW). A large variety of structural phase transitions, such as commensurate and incommensurate transitions, and the physical proper ties related to the formation of a CDW, have been an object of intense study made for many years by methods employing modem microscopic techniques. Rather recently, efforts have been devoted to the theoretical understanding of these experimental results. Thus, McMillan, for example, has developed an elegant phenomenological theory on the basis of the Landau free energy expansion. An extension of McMillan's theory has provided a successful understanding of the successive phase transitions observed in the IT- and 2H-compounds. In addition, a microscopic theory of lattice instability, lattice dynamics, and lattice distortion in the CDW state of the transition-metal dichalcogenides has been developed based on their electronic structures. As a result, the driving force of the CDW formation in the IT- and 2H-compounds has become clear. Furthermore, the effect of lattice fluctuations on the CDW transition and on the anomalous behavior of various physical properties has been made clear microscopically.
Download or read book The Theory of Critical Phenomena written by J. J. Binney and published by Oxford University Press. This book was released on 1992-06-11 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: The successful calculation of critical exponents for continuous phase transitions is one of the main achievements of theoretical physics over the last quarter-century. This was achieved through the use of scaling and field-theoretic techniques which have since become standard equipment in many areas of physics, especially quantum field theory. This book provides a thorough introduction to these techniques. Continuous phase transitions are introduced, then the necessary statistical mechanics is summarized, followed by standard models, some exact solutions and techniques for numerical simulations. The real-space renormalization group and mean-field theory are then explained and illustrated. The final chapters cover the Landau-Ginzburg model, from physical motivation, through diagrammatic perturbation theory and renormalization to the renormalization group and the calculation of critical exponents above and below the critical temperature.
Download or read book Elements of Phase Transitions and Critical Phenomena written by Hidetoshi Nishimori and published by Oxford University Press. This book was released on 2011 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: As an introductory account of the theory of phase transitions and critical phenomena, this book reflects lectures given by the authors to graduate students at their departments and is thus classroom-tested to help beginners enter the field. Most parts are written as self-contained units and every new concept or calculation is explained in detail without assuming prior knowledge of the subject. The book significantly enhances and revises a Japanese version which is a bestseller in the Japanese market and is considered a standard textbook in the field. It contains new pedagogical presentations of field theory methods, including a chapter on conformal field theory, and various modern developments hard to find in a single textbook on phase transitions. Exercises are presented as the topics develop, with solutions found at the end of the book, making the text useful for self-teaching, as well as for classroom learning.
Download or read book Statistical Mechanics and Applications in Condensed Matter written by Carlo Di Castro and published by Cambridge University Press. This book was released on 2015-08-27 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: This innovative and modular textbook combines classical topics in thermodynamics, statistical mechanics and many-body theory with the latest developments in condensed matter physics research. Written by internationally renowned experts and logically structured to cater for undergraduate and postgraduate students and researchers, it covers the underlying theoretical principles and includes numerous problems and worked examples to put this knowledge into practice. Three main streams provide a framework for the book; beginning with thermodynamics and classical statistical mechanics, including mean field approximation, fluctuations and the renormalization group approach to critical phenomena. The authors then examine quantum statistical mechanics, covering key topics such as normal Fermi and Luttinger liquids, superfluidity and superconductivity. Finally, they explore classical and quantum kinetics, Anderson localization and quantum interference, and disordered Fermi liquids. Unique in providing a bridge between thermodynamics and advanced topics in condensed matter, this textbook is an invaluable resource to all students of physics.
Download or read book Dynamic Spin Fluctuation Theory of Metallic Magnetism written by Nikolai B. Melnikov and published by Springer. This book was released on 2018-08-02 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a theoretical framework for magnetism in ferromagnetic metals and alloys at finite temperatures. The objective of the book is twofold. First, it gives a detailed presentation of the dynamic spin-fluctuation theory that takes into account both local and long-wave spin fluctuations with any frequency. The authors provide a detailed explanation of the fundamental role of quantum spin fluctuations in the mechanism of metallic magnetism and illustrate the theory with concrete examples. The second objective of the book is to give an accurate and self-contained presentation of many-body techniques such as the functional integral method and Green's functions, via a number of worked examples. These computational methods are of great use to solid state physicists working in a range of specialties. The book is intended primarily for researchers, but can also be used as textbook. The introductory chapters offer clear and complete derivations of the fundamentals, which makes the presentation self-contained. The main text is followed by a number of well-organized appendices that contain a detailed presentation of the necessary many-body techniques and computational methods. The book also includes a list of symbols and detailed index. This volume will be of interest to a wide range of physicists interested in magnetism and solid state physics in general, both theoreticians and experimentalists.
Download or read book Phase Transition Dynamics written by Akira Onuki and published by Cambridge University Press. This book was released on 2002-06-06 with total page 726 pages. Available in PDF, EPUB and Kindle. Book excerpt: Phase Transition Dynamics, first published in 2002, provides a fully comprehensive treatment of the study of phase transitions. Building on the statistical mechanics of phase transitions, covered in many introductory textbooks, it will be essential reading for researchers and advanced graduate students in physics, chemistry, metallurgy and polymer science.
Download or read book The Physics of Phase Transitions written by Pierre Papon and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Physics of Phase Transitions occupies an important place at the crossroads of several fields central to materials sciences. This second edition incorporates new developments in the states of matter physics, in particular in the domain of nanomaterials and atomic Bose-Einstein condensates where progress is accelerating. New information and application examples are included. This work deals with all classes of phase transitions in fluids and solids, containing chapters on evaporation, melting, solidification, magnetic transitions, critical phenomena, superconductivity, and more. End-of-chapter problems and complete answers are included.
Download or read book Kinetics of Phase Transitions written by Sanjay Puri and published by CRC Press. This book was released on 2009-03-24 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a comprehensive introduction with the necessary background material to make it accessible for a wide scientific audience, Kinetics of Phase Transitions discusses developments in domain-growth kinetics. This book combines pedagogical chapters from leading experts in this area and focuses on incorporating various experimentally releva
Download or read book Introduction To The Theory Of Critical Phenomena Mean Field Fluctuations And Renormalization 2nd Edition written by Dimo I Uzunov and published by World Scientific Publishing Company. This book was released on 2010-08-31 with total page 701 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to the theory of phase transitions and critical phenomena. The content covers a period of more than 100 years of theoretical research of condensed matter phases and phase transitions providing a clear interrelationship with experimental problems. It starts from certain basic University knowledge of thermodynamics, statistical physics and quantum mechanics. The text is illustrated with classic examples of phase transitions. Various types of phase transition and (multi)critical points are introduced and explained. The classic aspects of the theory are naturally related with the modern developments. This interrelationship and the field-theoretical renormalization group method are presented in details. The main applications of the renormalization group methods are presented. Special attention is paid to the description of quantum phase transitions. This edition contains a more detailed presentation of the renormalization group method and its applications to particular systems.
Download or read book Physics of Critical Fluctuations written by Yuli M. Ivanchenko and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building on Wilson's renormalization group, the authors have developed a unified approach that not only reproduces known results but also yields new results. A systematic exposition of the contemporary theory of phase transitions, the book includes detailed discussions of phenomena in Heisenberg magnets, granular super-conducting alloys, anisotropic systems of dipoles, and liquid-vapor transitions. Suitable for advanced undergraduates as well as graduate students in physics, the text assumes some knowledge of statistical mechanics, but is otherwise self-contained.
Download or read book Phase Transitions and Crystal Symmetry written by Yurii Aleksandrovich Izyumov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: About half a century ago Landau formulated the central principles of the phe nomenological second-order phase transition theory which is based on the idea of spontaneous symmetry breaking at phase transition. By means of this ap proach it has been possible to treat phase transitions of different nature in altogether distinct systems from a unified viewpoint, to embrace the aforemen tioned transitions by a unified body of mathematics and to show that, in a certain sense, physical systems in the vicinity of second-order phase transitions exhibit universal behavior. For several decades the Landau method has been extensively used to an alyze specific phase transitions in systems and has been providing a basis for interpreting experimental data on the behavior of physical characteristics near the phase transition, including the behavior of these characteristics in systems subject to various external effects such as pressure, electric and magnetic fields, deformation, etc. The symmetry aspects of Landau's theory are perhaps most effective in analyzing phase transitions in crystals because the relevant body of mathemat ics for this symmetry, namely, the crystal space group representation, has been worked out in great detail. Since particular phase transitions in crystals often call for a subtle symmetry analysis, the Landau method has been continually refined and developed over the past ten or fifteen years.
Download or read book Scale Invariance written by Annick LESNE and published by Springer Science & Business Media. This book was released on 2011-11-04 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: During a century, from the Van der Waals mean field description (1874) of gases to the introduction of renormalization group (RG techniques 1970), thermodynamics and statistical physics were just unable to account for the incredible universality which was observed in numerous critical phenomena. The great success of RG techniques is not only to solve perfectly this challenge of critical behaviour in thermal transitions but to introduce extremely useful tools in a wide field of daily situations where a system exhibits scale invariance. The introduction of scaling, scale invariance and universality concepts has been a significant turn in modern physics and more generally in natural sciences. Since then, a new "physics of scaling laws and critical exponents", rooted in scaling approaches, allows quantitative descriptions of numerous phenomena, ranging from phase transitions to earthquakes, polymer conformations, heartbeat rhythm, diffusion, interface growth and roughening, DNA sequence, dynamical systems, chaos and turbulence. The chapters are jointly written by an experimentalist and a theorist. This book aims at a pedagogical overview, offering to the students and researchers a thorough conceptual background and a simple account of a wide range of applications. It presents a complete tour of both the formal advances and experimental results associated with the notion of scaling, in physics, chemistry and biology.