Download or read book Fitting Equations to Data written by Cuthbert Daniel and published by Wiley-Interscience. This book was released on 1999-08-30 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: Helps any serious data analyst with a computer to recognize the strengths and limitations of data, to test the assumptions implicit in the least squares methods used to fit the data, to select appropriate forms of the variables, to judge which combinations of variables are most influential, and to state the conditions under which the fitted equations are applicable. This edition includes numerous extensions and new devices such as component and component-plus-residual plots, cross verification with a second sample, and an index of required x-precision; also, the search for better subset equations is enlarged to cover 262,144 alternatives. The methods described have been applied in agricultural, environmental, management, marketing, medical, physical, and social sciences. Mathematics is kept to the level of college algebra.
Download or read book Fitting Models to Biological Data Using Linear and Nonlinear Regression written by Harvey Motulsky and published by Oxford University Press. This book was released on 2004-05-27 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.
Download or read book R for Data Science written by Hadley Wickham and published by "O'Reilly Media, Inc.". This book was released on 2016-12-12 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Download or read book Data Science for Business written by Foster Provost and published by "O'Reilly Media, Inc.". This book was released on 2013-07-27 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates
Download or read book Introduction to Signal Processing written by Sophocles J. Orfanidis and published by . This book was released on 1996 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book differs from the classical DSP book model pioneered by O/S. Includes chapters on DFT, Z-Transform and Filter Design. The book starts out with what one reviewer calls "fun topics", and DSP applications".
Download or read book Numerical Data Fitting in Dynamical Systems written by Klaus Schittkowski and published by Springer Science & Business Media. This book was released on 2002-12-31 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Real life phenomena in engineering, natural, or medical sciences are often described by a mathematical model with the goal to analyze numerically the behaviour of the system. Advantages of mathematical models are their cheap availability, the possibility of studying extreme situations that cannot be handled by experiments, or of simulating real systems during the design phase before constructing a first prototype. Moreover, they serve to verify decisions, to avoid expensive and time consuming experimental tests, to analyze, understand, and explain the behaviour of systems, or to optimize design and production. As soon as a mathematical model contains differential dependencies from an additional parameter, typically the time, we call it a dynamical model. There are two key questions always arising in a practical environment: 1 Is the mathematical model correct? 2 How can I quantify model parameters that cannot be measured directly? In principle, both questions are easily answered as soon as some experimental data are available. The idea is to compare measured data with predicted model function values and to minimize the differences over the whole parameter space. We have to reject a model if we are unable to find a reasonably accurate fit. To summarize, parameter estimation or data fitting, respectively, is extremely important in all practical situations, where a mathematical model and corresponding experimental data are available to describe the behaviour of a dynamical system.
Download or read book Algebra and Trigonometry written by Jay P. Abramson and published by . This book was released on 2015-02-13 with total page 1564 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The text is suitable for a typical introductory algebra course, and was developed to be used flexibly. While the breadth of topics may go beyond what an instructor would cover, the modular approach and the richness of content ensures that the book meets the needs of a variety of programs."--Page 1.
Download or read book Experimental Methods for Science and Engineering Students written by Les Kirkup and published by Cambridge University Press. This book was released on 2019-09-05 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of experimental methods providing practical advice to students seeking guidance with their experimental work.
Download or read book Precalculus written by Jay P. Abramson and published by . This book was released on 2014-10-23 with total page 2000 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Precalculus is intended for college-level precalculus students. Since precalculus courses vary from one institution to the next, we have attempted to meet the needs of as broad an audience as possible, including all of the content that might be covered in any particular course. The result is a comprehensive book that covers more ground than an instructor could likely cover in a typical one- or two-semester course; but instructors should find, almost without fail, that the topics they wish to include in their syllabus are covered in the text. Many chapters of OpenStax College Precalculus are suitable for other freshman and sophomore math courses such as College Algebra and Trigonometry; however, instructors of those courses might need to supplement or adjust the material. OpenStax will also be releasing College Algebra and Algebra and trigonometry titles tailored to the particular scope, sequence, and pedagogy of those courses."--Preface.
Download or read book OpenIntro Statistics written by David Diez and published by . This book was released on 2015-07-02 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The OpenIntro project was founded in 2009 to improve the quality and availability of education by producing exceptional books and teaching tools that are free to use and easy to modify. We feature real data whenever possible, and files for the entire textbook are freely available at openintro.org. Visit our website, openintro.org. We provide free videos, statistical software labs, lecture slides, course management tools, and many other helpful resources.
Download or read book Mathematica written by Stephen Wolfram and published by . This book was released on 1991 with total page 996 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book R for Health Data Science written by Ewen Harrison and published by CRC Press. This book was released on 2020-12-31 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this age of information, the manipulation, analysis, and interpretation of data have become a fundamental part of professional life; nowhere more so than in the delivery of healthcare. From the understanding of disease and the development of new treatments, to the diagnosis and management of individual patients, the use of data and technology is now an integral part of the business of healthcare. Those working in healthcare interact daily with data, often without realising it. The conversion of this avalanche of information to useful knowledge is essential for high-quality patient care. R for Health Data Science includes everything a healthcare professional needs to go from R novice to R guru. By the end of this book, you will be taking a sophisticated approach to health data science with beautiful visualisations, elegant tables, and nuanced analyses. Features Provides an introduction to the fundamentals of R for healthcare professionals Highlights the most popular statistical approaches to health data science Written to be as accessible as possible with minimal mathematics Emphasises the importance of truly understanding the underlying data through the use of plots Includes numerous examples that can be adapted for your own data Helps you create publishable documents and collaborate across teams With this book, you are in safe hands – Prof. Harrison is a clinician and Dr. Pius is a data scientist, bringing 25 years’ combined experience of using R at the coal face. This content has been taught to hundreds of individuals from a variety of backgrounds, from rank beginners to experts moving to R from other platforms.
Download or read book Solving Transcendental Equations written by John P. Boyd and published by SIAM. This book was released on 2014-09-23 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transcendental equations arise in every branch of science and engineering. While most of these equations are easy to solve, some are not, and that is where this book serves as the mathematical equivalent of a skydiver's reserve parachute--not always needed, but indispensible when it is. The author's goal is to teach the art of finding the root of a single algebraic equation or a pair of such equations.
Download or read book Applied Econometrics with R written by Christian Kleiber and published by Springer Science & Business Media. This book was released on 2008-12-10 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: R is a language and environment for data analysis and graphics. It may be considered an implementation of S, an award-winning language initially - veloped at Bell Laboratories since the late 1970s. The R project was initiated by Robert Gentleman and Ross Ihaka at the University of Auckland, New Zealand, in the early 1990s, and has been developed by an international team since mid-1997. Historically, econometricians have favored other computing environments, some of which have fallen by the wayside, and also a variety of packages with canned routines. We believe that R has great potential in econometrics, both for research and for teaching. There are at least three reasons for this: (1) R is mostly platform independent and runs on Microsoft Windows, the Mac family of operating systems, and various ?avors of Unix/Linux, and also on some more exotic platforms. (2) R is free software that can be downloaded and installed at no cost from a family of mirror sites around the globe, the Comprehensive R Archive Network (CRAN); hence students can easily install it on their own machines. (3) R is open-source software, so that the full source code is available and can be inspected to understand what it really does, learn from it, and modify and extend it. We also like to think that platform independence and the open-source philosophy make R an ideal environment for reproducible econometric research.
Download or read book Modeling with It Stochastic Differential Equations written by E. Allen and published by Springer Science & Business Media. This book was released on 2007-03-08 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains a procedure for constructing realistic stochastic differential equation models for randomly varying systems in biology, chemistry, physics, engineering, and finance. Introductory chapters present the fundamental concepts of random variables, stochastic processes, stochastic integration, and stochastic differential equations. These concepts are explained in a Hilbert space setting which unifies and simplifies the presentation.
Download or read book Regression Analysis written by Ashish Sen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date, rigorous, and lucid treatment of the theory, methods, and applications of regression analysis, and thus ideally suited for those interested in the theory as well as those whose interests lie primarily with applications. It is further enhanced through real-life examples drawn from many disciplines, showing the difficulties typically encountered in the practice of regression analysis. Consequently, this book provides a sound foundation in the theory of this important subject.
Download or read book Practical Statistics for Data Scientists written by Peter Bruce and published by "O'Reilly Media, Inc.". This book was released on 2017-05-10 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data