EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book First Principles Approaches Towards Modeling the Electrochemical Interface

Download or read book First Principles Approaches Towards Modeling the Electrochemical Interface written by Joseph Allen Gauthier and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In light of recent global climate trends resulting primarily from anthropogenic carbon emissions, there is a growing need to transition away from our reliance on fossil fuels. Perhaps the most promising approach towards this goal is the incorporation of renewable energy resources, such as wind and solar, more heavily into our energy grid. Unfortunately, these resources are inherently intermittent in time. To eliminate fossil fuels from our energy mix, grid-scale energy storage on both the daily and seasonal time scales will therefore be necessary. Energy storage on such an immense scale can in principle be practically achieved by storing energy in the form of chemical bonds; however, in practice the efficient conversion of low energy to high energy compounds (and vice-versa) is hampered by poor catalysts, despite decades of research efforts. This thesis focuses on developments in utilizing computer simulations to search for catalyst materials that are capable of efficiently electrochemically converting chemicals for energy storage. Density functional theory (DFT) has proven to be a very useful tool in simulating catalytic processes, and has successfully led to design tools for catalyst prediction. However, the application of DFT to electrochemical reactions has long been complicated by the complexity of the electrochemical interface: rather than simulating a gas-solid interface, we must simulate an electrified liquid-solid interface. In the first part of this thesis, we examine a commonly used and criticized approximation in our simulations, namely that electron transfer from a metal surface to an adsorbing molecule occurs on a timescale much faster than the timescale of the molecular adsorption. We then turn our attention to the treatment of the solvent in our simulations of the electrochemical interface, beginning with an explicit treatment where solvent molecules are explicitly included in the simulation. Finally, we explore an implicit treatment of the electrolyte by the incorporation of a polarizable dielectric continuum. We show that while implicit treatments offer a much simpler way to compute reaction energetics, great care must be taken both when considering parameterization of the model (for, among other things, solvation energies), and in understanding the electrostatics involved in the reaction events studied. We conclude by developing a new method for simulating electrochemical reaction events, by considering a hybrid explicit-implicit approach to modeling the interface. In particular, we show the surface charge to be a better descriptor for the driving force, as opposed to the traditionally considered work function of the electrode.

Book First Principles Modeling of the Metal electrolyte Interface

Download or read book First Principles Modeling of the Metal electrolyte Interface written by and published by . This book was released on 2016 with total page 2 pages. Available in PDF, EPUB and Kindle. Book excerpt: The research objective of this proposal is the computational modeling of the metal-electrolyte interface purely from first principles. The accurate calculation of the electrostatic potential at electrically biased metal-electrolyte interfaces is a current challenge for periodic "ab-initio" simulations. It is also an essential requisite for predicting the correspondence between the macroscopic voltage and the microscopic interfacial charge distribution in electrochemical fuel cells. This interfacial charge distribution is the result of the chemical bonding between solute and metal atoms, and therefore cannot be accurately calculated with the use of semi-empirical classical force fields. The project aims to study in detail the structure and dynamics of aqueous electrolytes at metallic interfaces taking into account the effect of the electrode potential. Another side of the project is to produce an accurate method to simulate the water/metal interface. While both experimental and theoretical surface scientists have made a lot of progress on the understanding and characterization of both atomistic structures and reactions at the solid/vacuum interface, the theoretical description of electrochemical interfaces is still lacking behind. A reason for this is that a complete and accurate first principles description of both the liquid and the metal interfaces is still computationally too expensive and complex, since their characteristics are governed by the explicit atomic and electronic structure built at the interface as a response to environmental conditions. This project will characterize in detail how different theoretical levels of modeling describer the metal/water interface. In particular the role of van der Waals interactions will be carefully analyzed and prescriptions to perform accurate simulations will be produced.

Book Heterogeneous Catalysts

Download or read book Heterogeneous Catalysts written by Wey Yang Teoh and published by John Wiley & Sons. This book was released on 2021-02-23 with total page 768 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents state-of-the-art knowledge of heterogeneous catalysts including new applications in energy and environmental fields This book focuses on emerging techniques in heterogeneous catalysis, from new methodology for catalysts design and synthesis, surface studies and operando spectroscopies, ab initio techniques, to critical catalytic systems as relevant to energy and the environment. It provides the vision of addressing the foreseeable knowledge gap unfilled by classical knowledge in the field. Heterogeneous Catalysts: Advanced Design, Characterization and Applications begins with an overview on the evolution in catalysts synthesis and introduces readers to facets engineering on catalysts; electrochemical synthesis of nanostructured catalytic thin films; and bandgap engineering of semiconductor photocatalysts. Next, it examines how we are gaining a more precise understanding of catalytic events and materials under working conditions. It covers bridging pressure gap in surface catalytic studies; tomography in catalysts design; and resolving catalyst performance at nanoscale via fluorescence microscopy. Quantum approaches to predicting molecular reactions on catalytic surfaces follows that, along with chapters on Density Functional Theory in heterogeneous catalysis; first principles simulation of electrified interfaces in electrochemistry; and high-throughput computational design of novel catalytic materials. The book also discusses embracing the energy and environmental challenges of the 21st century through heterogeneous catalysis and much more. Presents recent developments in heterogeneous catalysis with emphasis on new fundamentals and emerging techniques Offers a comprehensive look at the important aspects of heterogeneous catalysis Provides an applications-oriented, bottoms-up approach to a high-interest subject that plays a vital role in industry and is widely applied in areas related to energy and environment Heterogeneous Catalysts: Advanced Design, Characterization and Applications is an important book for catalytic chemists, materials scientists, surface chemists, physical chemists, inorganic chemists, chemical engineers, and other professionals working in the chemical industry.

Book Atomic Scale Modelling of Electrochemical Systems

Download or read book Atomic Scale Modelling of Electrochemical Systems written by Marko M. Melander and published by John Wiley & Sons. This book was released on 2021-09-09 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atomic-Scale Modelling of Electrochemical Systems A comprehensive overview of atomistic computational electrochemistry, discussing methods, implementation, and state-of-the-art applications in the field The first book to review state-of-the-art computational and theoretical methods for modelling, understanding, and predicting the properties of electrochemical interfaces. This book presents a detailed description of the current methods, their background, limitations, and use for addressing the electrochemical interface and reactions. It also highlights several applications in electrocatalysis and electrochemistry. Atomic-Scale Modelling of Electrochemical Systems discusses different ways of including the electrode potential in the computational setup and fixed potential calculations within the framework of grand canonical density functional theory. It examines classical and quantum mechanical models for the solid-liquid interface and formation of an electrochemical double-layer using molecular dynamics and/or continuum descriptions. A thermodynamic description of the interface and reactions taking place at the interface as a function of the electrode potential is provided, as are novel ways to describe rates of heterogeneous electron transfer, proton-coupled electron transfer, and other electrocatalytic reactions. The book also covers multiscale modelling, where atomic level information is used for predicting experimental observables to enable direct comparison with experiments, to rationalize experimental results, and to predict the following electrochemical performance. Uniquely explains how to understand, predict, and optimize the properties and reactivity of electrochemical interfaces starting from the atomic scale Uses an engaging “tutorial style” presentation, highlighting a solid physicochemical background, computational implementation, and applications for different methods, including merits and limitations Bridges the gap between experimental electrochemistry and computational atomistic modelling Written by a team of experts within the field of computational electrochemistry and the wider computational condensed matter community, this book serves as an introduction to the subject for readers entering the field of atom-level electrochemical modeling, while also serving as an invaluable reference for advanced practitioners already working in the field.

Book Computational Catalysis

    Book Details:
  • Author : Aravind Asthagiri
  • Publisher : Royal Society of Chemistry
  • Release : 2014
  • ISBN : 1849734518
  • Pages : 277 pages

Download or read book Computational Catalysis written by Aravind Asthagiri and published by Royal Society of Chemistry. This book was released on 2014 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive review of the methods and approaches being adopted to push forward the boundaries of computational catalysis.

Book Electrocatalysis for Membrane Fuel Cells

Download or read book Electrocatalysis for Membrane Fuel Cells written by Nicolas Alonso-Vante and published by John Wiley & Sons. This book was released on 2023-09-06 with total page 581 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrocatalysis for Membrane Fuel Cells Comprehensive resource covering hydrogen oxidation reaction, oxygen reduction reaction, classes of electrocatalytic materials, and characterization methods Electrocatalysis for Membrane Fuel Cells focuses on all aspects of electrocatalysis for energy applications, covering perspectives as well as the low-temperature fuel systems principles, with main emphasis on hydrogen oxidation reaction (HOR) and the oxygen reduction reaction (ORR). Following an introduction to basic principles of electrochemistry for electrocatalysis with attention to the methods to obtain the parameters crucial to characterize these systems, Electrocatalysis for Membrane Fuel Cells covers sample topics such as: Electrocatalytic materials and electrode configurations, including precious versus non-precious metal centers, stability and the role of supports for catalytic nano-objects; Fundamentals on characterization techniques of materials and the various classes of electrocatalytic materials; Theoretical explanations of materials and systems using both Density Functional Theory (DFT) and molecular modelling; Principles and methods in the analysis of fuel cells systems, fuel cells integration and subsystem design. Electrocatalysis for Membrane Fuel Cells quickly and efficiently introduces the field of electrochemistry, along with synthesis and testing in prototypes of materials, to researchers and professionals interested in renewable energy and electrocatalysis for chemical energy conversion.

Book Electrochemical Methods

    Book Details:
  • Author : Allen J. Bard
  • Publisher : John Wiley & Sons
  • Release : 2022-05-03
  • ISBN : 1119334055
  • Pages : 1112 pages

Download or read book Electrochemical Methods written by Allen J. Bard and published by John Wiley & Sons. This book was released on 2022-05-03 with total page 1112 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest edition of a classic textbook in electrochemistry The third edition of Electrochemical Methods has been extensively revised to reflect the evolution of electrochemistry over the past two decades, highlighting significant developments in the understanding of electrochemical phenomena and emerging experimental tools, while extending the book's value as a general introduction to electrochemical methods. This authoritative resource for new students and practitioners provides must-have information crucial to a successful career in research. The authors focus on methods that are extensively practiced and on phenomenological questions of current concern. This latest edition of Electrochemical Methods contains numerous problems and chemical examples, with illustrations that serve to illuminate the concepts contained within in a way that will assist both student and mid-career practitioner. Significant updates and new content in this third edition include: An extensively revised introductory chapter on electrode processes, designed for new readers coming into electrochemistry from diverse backgrounds New chapters on steady-state voltammetry at ultramicroelectrodes, inner-sphere electrode reactions and electrocatalysis, and single-particle electrochemistry Extensive treatment of Marcus kinetics as applied to electrode reactions, a more detailed introduction to migration, and expanded coverage of electrochemical impedance spectroscopy The inclusion of Lab Notes in many chapters to help newcomers with the transition from concept to practice in the laboratory The new edition has been revised to address a broader audience of scientists and engineers, designed to be accessible to readers with a basic foundation in university chemistry, physics and mathematics. It is a self-contained volume, developing all key ideas from the fundamental principles of chemistry and physics. Perfect for senior undergraduate and graduate students taking courses in electrochemistry, physical and analytical chemistry, this is also an indispensable resource for researchers and practitioners working in fields including electrochemistry and electrochemical engineering, energy storage and conversion, analytical chemistry and sensors.

Book Nanoscale Electrochemistry

Download or read book Nanoscale Electrochemistry written by Andrew J. Wain and published by Elsevier. This book was released on 2021-09-14 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoscale Electrochemistry focuses on challenges and advances in electrochemical nanoscience at solid–liquid interfaces, highlighting the most prominent developments of the last decade. Nanotechnology has had a tremendous effect on the multidisciplinary field of electrochemistry, yielding new fundamental insights that have broadened our understanding of interfacial processes and stimulating new and diverse applications. The book begins with a tutorial chapter to introduce the principles of nanoscale electrochemical systems and emphasize their unique behavior compared with their macro/microscopic counterparts. Building on this, the following three chapters present analytical applications, such as sensing and electrochemical imaging, that are familiar to the traditional electrochemist but whose extension to the nanoscale is nontrivial and reveals new chemical information. The subsequent three chapters present exciting new electrochemical methodologies that are specific to the nanoscale, including "single entity"-based methods and surface-enhanced electrochemical spectroscopy. These techniques, now sufficiently mature for exposition, have paved the way for major developments in our understanding of solid–liquid interfaces and continue to push electrochemical analysis toward atomic-length scales. The final three chapters address the rich overlap between electrochemistry and nanomaterials science, highlighting notable applications in energy conversion and storage. This is an important reference for both academic and industrial researchers who are seeking to learn more about how nanoscale electrochemistry has developed in recent years. Outlines the major applications of nanoscale electrochemistry in energy storage, spectroscopy and biology Summarizes the major principles of nanoscale electrochemical systems, exploring how they differ from similar system types Discusses the major challenges of electrochemical analysis at the nanoscale

Book Research Opportunities in Corrosion Science and Engineering

Download or read book Research Opportunities in Corrosion Science and Engineering written by National Research Council and published by National Academies Press. This book was released on 2011-01-27 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of corrosion science and engineering is on the threshold of important advances. Advances in lifetime prediction and technological solutions, as enabled by the convergence of experimental and computational length and timescales and powerful new modeling techniques, are allowing the development of rigorous, mechanistically based models from observations and physical laws. Despite considerable progress in the integration of materials by design into engineering development of products, corrosion considerations are typically missing from such constructs. Similarly, condition monitoring and remaining life prediction (prognosis) do not at present incorporate corrosion factors. Great opportunities exist to use the framework of these materials design and engineering tools to stimulate corrosion research and development to achieve quantitative life prediction, to incorporate state-of-the-art sensing approaches into experimentation and materials architectures, and to introduce environmental degradation factors into these capabilities. Research Opportunities in Corrosion Science and Engineering identifies grand challenges for the corrosion research community, highlights research opportunities in corrosion science and engineering, and posits a national strategy for corrosion research. It is a logical and necessary complement to the recently published book, Assessment of Corrosion Education, which emphasized that technical education must be supported by academic, industrial, and government research. Although the present report focuses on the government role, this emphasis does not diminish the role of industry or academia.

Book Handbook of Fuel Cells

Download or read book Handbook of Fuel Cells written by Wolf Vielstich and published by John Wiley & Sons. This book was released on 2009-04-20 with total page 1090 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely addition to the highly acclaimed four-volume handbook set; volumes 5 and 6 highlight recent developments, particularly in the fields of new materials, molecular modeling and durability. Since the publication of the first four volumes of the Handbook of Fuel Cells in 2003, the focus of fuel cell research and development has shifted from optimizing fuel cell performance with well-known materials to developing new materials concepts, and to understanding the origins of materials and fuel cell degradation. This new two-volume set provides an authoritative and timely guide to these recent developments in fuel cell research.

Book Energy Materials Coordinating Committe  EMaCC   Fiscal Year 2002 Annual Technical Report

Download or read book Energy Materials Coordinating Committe EMaCC Fiscal Year 2002 Annual Technical Report written by and published by DIANE Publishing. This book was released on with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Energy Materials Coordinating Committe  EMaCC   Fiscal Year 2003 Annual Technical Report

Download or read book Energy Materials Coordinating Committe EMaCC Fiscal Year 2003 Annual Technical Report written by and published by DIANE Publishing. This book was released on with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multiscale Simulations for Electrochemical Devices

Download or read book Multiscale Simulations for Electrochemical Devices written by Ryoji Asahi and published by CRC Press. This book was released on 2020-01-03 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Environmental protection and sustainability are major concerns in today’s world, and a reduction in CO2 emission and the implementation of clean energy are inevitable challenges for scientists and engineers today. The development of electrochemical devices, such as fuel cells, Li-ion batteries, and artificial photosynthesis, is vital for solving environmental problems. A practical device requires designing of materials and operational systems; however, a multidisciplinary subject covering microscopic physics and chemistry as well as macroscopic device properties is absent. In this situation, multiscale simulations play an important role. This book compiles and details cutting-edge research and development of atomistic, nanoscale, microscale, and macroscale computational modeling for various electrochemical devices, including hydrogen storage, Li-ion batteries, fuel cells, and artificial photocatalysis. The authors have been involved in the development of energy materials and devices for many years. In each chapter, after reviewing the calculation methods commonly used in the field, the authors focus on a specific computational approach that is applied to a realistic problem crucial for device improvement. They introduce the simulation technique not only as an analysis tool to explain experimental results but also as a design tool in the scale of interest. At the end of each chapter, a future perspective is added as a guide for the extension of research. Therefore, this book is suitable as a textbook or a reference on multiscale simulations and will appeal to anyone interested in learning practical simulations and applying them to problems in the development of frontier and futuristic electrochemical devices.

Book Computational Electrochemistry

Download or read book Computational Electrochemistry written by S. Paddison and published by The Electrochemical Society. This book was released on 2015-12-28 with total page 49 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Annual Reports on Computational Chemistry

Download or read book Annual Reports on Computational Chemistry written by and published by Elsevier. This book was released on 2022-11-05 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annual Reports in Computational Chemistry, Volume 18 in this important serial, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of timely topics, including Atomistic modelling of surface plasmon resonances, Recent Advances in Solvation Modelling Applications: Chemical Properties, Reaction Mechanisms and Catalysis, Entropy considerations in catalysis, High level computational chemistry methods, and Computational Organofluorine chemistry. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Annual Report on Computational Chemistry series Covers topics ranging from atomistic modeling of surface plasmon resonances to computational organofluorine chemistry

Book Computational Modelling and Simulations for Designing of Corrosion Inhibitors

Download or read book Computational Modelling and Simulations for Designing of Corrosion Inhibitors written by Dakeshwar Kumar Verma and published by Elsevier. This book was released on 2023-04-19 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Modeling and Simulations for Designing of Corrosion Inhibitors: Fundamentals and Realistic Applications offers a collection of major advancements in the field of computational modeling for the design and testing of corrosion inhibition effectiveness of organic corrosion inhibitors. This guide presents the latest developments in molecular modeling of organic compounds using computational software, which has emerged as a powerful approach for theoretical determination of corrosion inhibition potentials of organic compounds. The book covers common techniques involved in theoretical studies of corrosion inhibition potentials, and mechanisms such as density functional theory, molecular dynamics, Monte Carlo simulations, artificial neural networks, and quantitative structure-activity relationship. Covers basic, fundamental principles, advantages, parameters, and applications of computational and molecular modeling for designing potential corrosion inhibitors for metals and alloys Describes advancements of computational modeling for the design of organic corrosion inhibitors and applications in electrochemical engineering and materials science Focuses on the most advanced applications in industry-oriented fields, including current challenges Includes websites of interest and information about the latest research

Book Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage

Download or read book Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage written by Alejandro A. Franco and published by Springer. This book was released on 2015-11-12 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to review innovative physical multiscale modeling methods which numerically simulate the structure and properties of electrochemical devices for energy storage and conversion. Written by world-class experts in the field, it revisits concepts, methodologies and approaches connecting ab initio with micro-, meso- and macro-scale modeling of components and cells. It also discusses the major scientific challenges of this field, such as that of lithium-ion batteries. This book demonstrates how fuel cells and batteries can be brought together to take advantage of well-established multi-scale physical modeling methodologies to advance research in this area. This book also highlights promising capabilities of such approaches for inexpensive virtual experimentation. In recent years, electrochemical systems such as polymer electrolyte membrane fuel cells, solid oxide fuel cells, water electrolyzers, lithium-ion batteries and supercapacitors have attracted much attention due to their potential for clean energy conversion and as storage devices. This has resulted in tremendous technological progress, such as the development of new electrolytes and new engineering designs of electrode structures. However, these technologies do not yet possess all the necessary characteristics, especially in terms of cost and durability, to compete within the most attractive markets. Physical multiscale modeling approaches bridge the gap between materials’ atomistic and structural properties and the macroscopic behavior of a device. They play a crucial role in optimizing the materials and operation in real-life conditions, thereby enabling enhanced cell performance and durability at a reduced cost. This book provides a valuable resource for researchers, engineers and students interested in physical modelling, numerical simulation, electrochemistry and theoretical chemistry.