Download or read book Transfer Learning written by Qiang Yang and published by Cambridge University Press. This book was released on 2020-02-13 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transfer learning deals with how systems can quickly adapt themselves to new situations, tasks and environments. It gives machine learning systems the ability to leverage auxiliary data and models to help solve target problems when there is only a small amount of data available. This makes such systems more reliable and robust, keeping the machine learning model faced with unforeseeable changes from deviating too much from expected performance. At an enterprise level, transfer learning allows knowledge to be reused so experience gained once can be repeatedly applied to the real world. For example, a pre-trained model that takes account of user privacy can be downloaded and adapted at the edge of a computer network. This self-contained, comprehensive reference text describes the standard algorithms and demonstrates how these are used in different transfer learning paradigms. It offers a solid grounding for newcomers as well as new insights for seasoned researchers and developers.
Download or read book Federated and Transfer Learning written by Roozbeh Razavi-Far and published by Springer Nature. This book was released on 2022-09-30 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a collection of recent research works on learning from decentralized data, transferring information from one domain to another, and addressing theoretical issues on improving the privacy and incentive factors of federated learning as well as its connection with transfer learning and reinforcement learning. Over the last few years, the machine learning community has become fascinated by federated and transfer learning. Transfer and federated learning have achieved great success and popularity in many different fields of application. The intended audience of this book is students and academics aiming to apply federated and transfer learning to solve different kinds of real-world problems, as well as scientists, researchers, and practitioners in AI industries, autonomous vehicles, and cyber-physical systems who wish to pursue new scientific innovations and update their knowledge on federated and transfer learning and their applications.
Download or read book Federated Learning Systems written by Muhammad Habib ur Rehman and published by Springer Nature. This book was released on 2021-06-11 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the research area from multiple viewpoints including bibliometric analysis, reviews, empirical analysis, platforms, and future applications. The centralized training of deep learning and machine learning models not only incurs a high communication cost of data transfer into the cloud systems but also raises the privacy protection concerns of data providers. This book aims at targeting researchers and practitioners to delve deep into core issues in federated learning research to transform next-generation artificial intelligence applications. Federated learning enables the distribution of the learning models across the devices and systems which perform initial training and report the updated model attributes to the centralized cloud servers for secure and privacy-preserving attribute aggregation and global model development. Federated learning benefits in terms of privacy, communication efficiency, data security, and contributors’ control of their critical data.
Download or read book Federated Learning written by Qiang Yang and published by Springer Nature. This book was released on 2020-11-25 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”
Download or read book Practical Deep Learning for Cloud Mobile and Edge written by Anirudh Koul and published by "O'Reilly Media, Inc.". This book was released on 2019-10-14 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: Whether you’re a software engineer aspiring to enter the world of deep learning, a veteran data scientist, or a hobbyist with a simple dream of making the next viral AI app, you might have wondered where to begin. This step-by-step guide teaches you how to build practical deep learning applications for the cloud, mobile, browsers, and edge devices using a hands-on approach. Relying on years of industry experience transforming deep learning research into award-winning applications, Anirudh Koul, Siddha Ganju, and Meher Kasam guide you through the process of converting an idea into something that people in the real world can use. Train, tune, and deploy computer vision models with Keras, TensorFlow, Core ML, and TensorFlow Lite Develop AI for a range of devices including Raspberry Pi, Jetson Nano, and Google Coral Explore fun projects, from Silicon Valley’s Not Hotdog app to 40+ industry case studies Simulate an autonomous car in a video game environment and build a miniature version with reinforcement learning Use transfer learning to train models in minutes Discover 50+ practical tips for maximizing model accuracy and speed, debugging, and scaling to millions of users
Download or read book Machine Learning written by Stephen Marsland and published by CRC Press. This book was released on 2011-03-23 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: Traditional books on machine learning can be divided into two groups- those aimed at advanced undergraduates or early postgraduates with reasonable mathematical knowledge and those that are primers on how to code algorithms. The field is ready for a text that not only demonstrates how to use the algorithms that make up machine learning methods, but
Download or read book 2021 Global Reliability and Prognostics and Health Management PHM Nanjing written by IEEE Staff and published by . This book was released on 2021-10-15 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of GlobalRel & PHM Nanjing 2021 conference is to serve as a premier interdisciplinary forum for researchers, scientists and scholars in the domains of aeronautics and astronautics, energy and power systems, process industries, computers and telecommunications, industrial automation, to present and discuss the most recent innovations, trends, concerns, challenges and solutions in terms of Engineering Reliability and PHM
Download or read book Advances and Open Problems in Federated Learning written by Peter Kairouz and published by . This book was released on 2021-06-23 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: The term Federated Learning was coined as recently as 2016 to describe a machine learning setting where multiple entities collaborate in solving a machine learning problem, under the coordination of a central server or service provider. Each client's raw data is stored locally and not exchanged or transferred; instead, focused updates intended for immediate aggregation are used to achieve the learning objective.Since then, the topic has gathered much interest across many different disciplines and the realization that solving many of these interdisciplinary problems likely requires not just machine learning but techniques from distributed optimization, cryptography, security, differential privacy, fairness, compressed sensing, systems, information theory, statistics, and more.This monograph has contributions from leading experts across the disciplines, who describe the latest state-of-the art from their perspective. These contributions have been carefully curated into a comprehensive treatment that enables the reader to understand the work that has been done and get pointers to where effort is required to solve many of the problems before Federated Learning can become a reality in practical systems.Researchers working in the area of distributed systems will find this monograph an enlightening read that may inspire them to work on the many challenging issues that are outlined. This monograph will get the reader up to speed quickly and easily on what is likely to become an increasingly important topic: Federated Learning.
Download or read book The EU General Data Protection Regulation GDPR written by Paul Voigt and published by Springer. This book was released on 2017-08-07 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides expert advice on the practical implementation of the European Union’s General Data Protection Regulation (GDPR) and systematically analyses its various provisions. Examples, tables, a checklist etc. showcase the practical consequences of the new legislation. The handbook examines the GDPR’s scope of application, the organizational and material requirements for data protection, the rights of data subjects, the role of the Supervisory Authorities, enforcement and fines under the GDPR, and national particularities. In addition, it supplies a brief outlook on the legal consequences for seminal data processing areas, such as Cloud Computing, Big Data and the Internet of Things.Adopted in 2016, the General Data Protection Regulation will come into force in May 2018. It provides for numerous new and intensified data protection obligations, as well as a significant increase in fines (up to 20 million euros). As a result, not only companies located within the European Union will have to change their approach to data security; due to the GDPR’s broad, transnational scope of application, it will affect numerous companies worldwide.
Download or read book The Transfer of Cognitive Skill written by Mark K. Singley and published by Harvard University Press. This book was released on 1989 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: The issue of the transfer of learning from one domain to another is a classic problem in psychology and an educational question of great importance, which this book sets out to solve through a theory of transfer based on a comprehensive theory of skill acquisition.
Download or read book AI and Machine Learning for Coders written by Laurence Moroney and published by O'Reilly Media. This book was released on 2020-10-01 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you're looking to make a career move from programmer to AI specialist, this is the ideal place to start. Based on Laurence Moroney's extremely successful AI courses, this introductory book provides a hands-on, code-first approach to help you build confidence while you learn key topics. You'll understand how to implement the most common scenarios in machine learning, such as computer vision, natural language processing (NLP), and sequence modeling for web, mobile, cloud, and embedded runtimes. Most books on machine learning begin with a daunting amount of advanced math. This guide is built on practical lessons that let you work directly with the code. You'll learn: How to build models with TensorFlow using skills that employers desire The basics of machine learning by working with code samples How to implement computer vision, including feature detection in images How to use NLP to tokenize and sequence words and sentences Methods for embedding models in Android and iOS How to serve models over the web and in the cloud with TensorFlow Serving
Download or read book Learning to Learn written by Sebastian Thrun and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past three decades or so, research on machine learning and data mining has led to a wide variety of algorithms that learn general functions from experience. As machine learning is maturing, it has begun to make the successful transition from academic research to various practical applications. Generic techniques such as decision trees and artificial neural networks, for example, are now being used in various commercial and industrial applications. Learning to Learn is an exciting new research direction within machine learning. Similar to traditional machine-learning algorithms, the methods described in Learning to Learn induce general functions from experience. However, the book investigates algorithms that can change the way they generalize, i.e., practice the task of learning itself, and improve on it. To illustrate the utility of learning to learn, it is worthwhile comparing machine learning with human learning. Humans encounter a continual stream of learning tasks. They do not just learn concepts or motor skills, they also learn bias, i.e., they learn how to generalize. As a result, humans are often able to generalize correctly from extremely few examples - often just a single example suffices to teach us a new thing. A deeper understanding of computer programs that improve their ability to learn can have a large practical impact on the field of machine learning and beyond. In recent years, the field has made significant progress towards a theory of learning to learn along with practical new algorithms, some of which led to impressive results in real-world applications. Learning to Learn provides a survey of some of the most exciting new research approaches, written by leading researchers in the field. Its objective is to investigate the utility and feasibility of computer programs that can learn how to learn, both from a practical and a theoretical point of view.
Download or read book Domain Adaptation and Representation Transfer and Distributed and Collaborative Learning written by Shadi Albarqouni and published by Springer. This book was released on 2020-09-26 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Second MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2020, and the First MICCAI Workshop on Distributed and Collaborative Learning, DCL 2020, held in conjunction with MICCAI 2020 in October 2020. The conference was planned to take place in Lima, Peru, but changed to an online format due to the Coronavirus pandemic. For DART 2020, 12 full papers were accepted from 18 submissions. They deal with methodological advancements and ideas that can improve the applicability of machine learning (ML)/deep learning (DL) approaches to clinical settings by making them robust and consistent across different domains. For DCL 2020, the 8 papers included in this book were accepted from a total of 12 submissions. They focus on the comparison, evaluation and discussion of methodological advancement and practical ideas about machine learning applied to problems where data cannot be stored in centralized databases; where information privacy is a priority; where it is necessary to deliver strong guarantees on the amount and nature of private information that may be revealed by the model as a result of training; and where it's necessary to orchestrate, manage and direct clusters of nodes participating in the same learning task.
Download or read book Deep Learning in Visual Computing written by Hassan Ugail and published by CRC Press. This book was released on 2022-07-07 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is an artificially intelligent entity that teaches itself and can be utilized to make predictions. Deep learning mimics the human brain and provides learned solutions addressing many challenging problems in the area of visual computing. From object recognition to image classification for diagnostics, deep learning has shown the power of artificial deep neural networks in solving real world visual computing problems with super-human accuracy. The introduction of deep learning into the field of visual computing has meant to be the death of most of the traditional image processing and computer vision techniques. Today, deep learning is considered to be the most powerful, accurate, efficient and effective method with the potential to solve many of the most challenging problems in visual computing. This book provides an insight into deep machine learning and the challenges in visual computing to tackle the novel method of machine learning. It introduces readers to the world of deep neural network architectures with easy-to-understand explanations. From face recognition to image classification for diagnosis of cancer, the book provides unique examples of solved problems in applied visual computing using deep learning. Interested and enthusiastic readers of modern machine learning methods will find this book easy to follow. They will find it a handy guide for designing and implementing their own projects in the field of visual computing.
Download or read book Building Machine Learning Pipelines written by Hannes Hapke and published by "O'Reilly Media, Inc.". This book was released on 2020-07-13 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Companies are spending billions on machine learning projects, but it’s money wasted if the models can’t be deployed effectively. In this practical guide, Hannes Hapke and Catherine Nelson walk you through the steps of automating a machine learning pipeline using the TensorFlow ecosystem. You’ll learn the techniques and tools that will cut deployment time from days to minutes, so that you can focus on developing new models rather than maintaining legacy systems. Data scientists, machine learning engineers, and DevOps engineers will discover how to go beyond model development to successfully productize their data science projects, while managers will better understand the role they play in helping to accelerate these projects. Understand the steps to build a machine learning pipeline Build your pipeline using components from TensorFlow Extended Orchestrate your machine learning pipeline with Apache Beam, Apache Airflow, and Kubeflow Pipelines Work with data using TensorFlow Data Validation and TensorFlow Transform Analyze a model in detail using TensorFlow Model Analysis Examine fairness and bias in your model performance Deploy models with TensorFlow Serving or TensorFlow Lite for mobile devices Learn privacy-preserving machine learning techniques
Download or read book Renewable Energy Forecasting and Risk Management written by Philippe Drobinski and published by Springer. This book was released on 2018-12-27 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gathering selected, revised and extended contributions from the conference ‘Forecasting and Risk Management for Renewable Energy FOREWER’, which took place in Paris in June 2017, this book focuses on the applications of statistics to the risk management and forecasting problems arising in the renewable energy industry. The different contributions explore all aspects of the energy production chain: forecasting and probabilistic modelling of renewable resources, including probabilistic forecasting approaches; modelling and forecasting of wind and solar power production; prediction of electricity demand; optimal operation of microgrids involving renewable production; and finally the effect of renewable production on electricity market prices. Written by experts in statistics, probability, risk management, economics and electrical engineering, this multidisciplinary volume will serve as a reference on renewable energy risk management and at the same time as a source of inspiration for statisticians and probabilists aiming to work on energy-related problems.
Download or read book Artificial Intelligence in Medicine written by Martin Michalowski and published by Springer Nature. This book was released on 2020-09-25 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: The LNAI 12299 constitutes the papers of the 18th International Conference on Artificial Intelligence in Medicine, AIME 2020, which will be held online in August 2020. The 42 full papers presented together with 1short papers in this volume were carefully reviewed and selected from a total of 103 submissions. The AIME 2020 goals were to present and consolidate the international state of the art of AI in biomedical research from the perspectives of theory, methodology, systems, and applications.