EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fatigue Testing of Large Engineering Components and Structures

Download or read book Fatigue Testing of Large Engineering Components and Structures written by Kenneth James Marsh and published by . This book was released on 1970 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Full Scale Fatigue Testing of Components and Structures

Download or read book Full Scale Fatigue Testing of Components and Structures written by K. J. Marsh and published by Butterworth-Heinemann. This book was released on 2013-10-22 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: Full-scale Fatigue Testing of Components and Structures presents the approaches to the testing of full-scale components or structures. The book begins by examining the necessity or desirability of full-scale fatigue testing. Subsequent chapters are devoted to the discussion of fatigue testing done on aircraft structures, railway components, helicopter rotor heads, artillery gun structures, and bridge components. The role of full-scale fatigue testing on automotive components and systems, structural testing in nuclear engineering, and the use of a structural fatigue testing laboratory for other tests are covered as well. Engineers, materials scientists, and researchers in the field of fatigue testing will find the book very useful.

Book Fatigue and Durability of Structural Materials

Download or read book Fatigue and Durability of Structural Materials written by Gary R. Halford and published by ASM International. This book was released on 2006 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fatigue and Durability of Structural Materials explains how mechanical material behavior relates to the design of structural machine components. The major emphasis is on fatigue and failure behavior using engineering models that have been developed to predict, in advance of service, acceptable fatigue and other durability-related lifetimes. The book covers broad classes of materials used for high-performance structural applications such as aerospace components, automobiles, and power generation systems. Coverage focuses on metallic materials but also addresses unique capabilities of important nonmetals. The concepts are applied to behavior at room or ambient temperatures; a planned second volume will address behavior at higher-temperatures. The volume is a repository of the most significant contributions by the authors to the art and science of material and structural durability over the past half century. During their careers, including 40 years of direct collaboration, they have developed a host of durability models that are based on sound physical and engineering principles. Yet, the models and interpretation of behavior have a unique simplicity that is appreciated by the practicing engineer as well as the beginning student. In addition to their own pioneering work, the authors also present the work of numerous others who have provided useful results that have moved progress in these fields. This book will be of immense value to practicing mechanical and materials engineers and designers charged with producing structural components with adequate durability. The coverage is appropriate for a range of technical levels from undergraduate engineering students through material behavior researchers and model developers. It will be of interest to personnel in the automotive and off-highway vehicle manufacturing industry, the aeronautical industry, space propulsion and the power generation/conversion industry, the electric power industry, the machine tool industry, and any industry associated with the design and manufacturing of mechanical equipment subject to cyclic loads.

Book Fatigue of Structures and Materials

Download or read book Fatigue of Structures and Materials written by J. Schijve and published by Springer Science & Business Media. This book was released on 2008-12-16 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fatigue of structures and materials covers a wide scope of different topics. The purpose of the present book is to explain these topics, to indicate how they can be analyzed, and how this can contribute to the designing of fatigue resistant structures and to prevent structural fatigue problems in service. Chapter 1 gives a general survey of the topic with brief comments on the signi?cance of the aspects involved. This serves as a kind of a program for the following chapters. The central issues in this book are predictions of fatigue properties and designing against fatigue. These objectives cannot be realized without a physical and mechanical understanding of all relevant conditions. In Chapter 2 the book starts with basic concepts of what happens in the material of a structure under cyclic loads. It illustrates the large number of variables which can affect fatigue properties and it provides the essential background knowledge for subsequent chapters. Different subjects are presented in the following main parts: • Basic chapters on fatigue properties and predictions (Chapters 2–8) • Load spectra and fatigue under variable-amplitude loading (Chapters 9–11) • Fatigue tests and scatter (Chapters 12 and 13) • Special fatigue conditions (Chapters 14–17) • Fatigue of joints and structures (Chapters 18–20) • Fiber-metal laminates (Chapter 21) Each chapter presents a discussion of a speci?c subject.

Book Metal Fatigue in Engineering

Download or read book Metal Fatigue in Engineering written by Henry O. Fuchs and published by . This book was released on 1980-06-20 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Optimal Design Mechanical and Structural Systems Edward J. Haug & Jasbir S. Arora This computer-aided design text presents and illustrates techniques for optimizing the design of a wide variety of mechanical and structural systems through the use of nonlinear programming and optimal control theory. A state space method is adopted that incorporates the system model as an integral part of the design formulations. Step-by-step numerical algorithms are given for each method of optimal design. Basic properties of the equations of mechanics are used to carry out design sensitivity analysis and optimization, with numerical efficiency and generality that is in most cases an order of magnitude faster in digital computation than applications using standard nonlinear programming methods. 1979 Optimum Design of Mechanical Elements, 2nd Ed. Ray C. Johnson The two basic optimization techniques, the method of optimal design (MOD) and automated optimal design (AOD), discussed in this valuable work can be applied to the optimal design of mechanical elements commonly found in machinery, mechanisms, mechanical assemblages, products, and structures. The many illustrative examples used to explicate these techniques include such topics as tensile bars, torsion bars, shafts in combined loading, helical and spur gears, helical springs, and hydrostatic journal bearings. The author covers curve fitting, equation simplification, material properties, and failure theories, as well as the effects of manufacturing errors on product performance and the need for a factor of safety in design work. 1980 Globally Optimal Design Douglass J. Wilde Here are new analytic optimization procedures effective where numerical methods either take too long or do not provide correct answers. This book uses mathematics sparingly, proving only results generated by examples. It defines simple design methods guaranteed to give the global, rather than any local, optimum through computations easy enough to be done on a manual calculator. The author confronts realistic situations: determining critical constraints; dealing with negative contributions; handling power function; tackling logarithmic and exponential nonlinearities; coping with standard sizes and indivisible components; and resolving conflicting objectives and logical restrictions. Special mathematical structures are exposed and used to solve design problems. 1978

Book Fatigue and Fracture of Non metallic Materials and Structures

Download or read book Fatigue and Fracture of Non metallic Materials and Structures written by Andrea Spagnoli and published by MDPI. This book was released on 2020-06-23 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: The mechanics of fracture and fatigue have produced a huge body of research work in relation to applications to metal materials and structures. However, a variety of non-metallic materials (e.g., concrete and cementitious composites, rocks, glass, ceramics, bituminous mixtures, composites, polymers, rubber and soft matter, bones and biological materials, and advanced and multifunctional materials) have received relatively less attention, despite their attractiveness for a large spectrum of applications related to the components and structures of diverse engineering branches, applied sciences and architecture, and to the load-carrying systems of biological organisms. This book covers the broad topic of structural integrity of non-metallic materials, considering the modelling, assessment, and reliability of structural elements of any scale. Original contributions from engineers, mechanical materials scientists, computer scientists, physicists, chemists, and mathematicians are presented, applying both experimental and theoretical approaches.

Book Fatigue Testing and Analysis

Download or read book Fatigue Testing and Analysis written by Yung-Li Lee and published by Elsevier. This book was released on 2011-04-18 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fatigue Testing and Analysis: Theory and Practice presents the latest, proven techniques for fatigue data acquisition, data analysis, and test planning and practice. More specifically, it covers the most comprehensive methods to capture the component load, to characterize the scatter of product fatigue resistance and loading, to perform the fatigue damage assessment of a product, and to develop an accelerated life test plan for reliability target demonstration. This book is most useful for test and design engineers in the ground vehicle industry. Fatigue Testing and Analysis introduces the methods to account for variability of loads and statistical fatigue properties that are useful for further probabilistic fatigue analysis. The text incorporates and demonstrates approaches that account for randomness of loading and materials, and covers the applications and demonstrations of both linear and double-linear damage rules. The reader will benefit from summaries of load transducer designs and data acquisition techniques, applications of both linear and non-linear damage rules and methods, and techniques to determine the statistical fatigue properties for the nominal stress-life and the local strain-life methods. Covers the useful techniques for component load measurement and data acquisition, fatigue properties determination, fatigue analysis, and accelerated life test criteria development, and, most importantly, test plans for reliability demonstrations Written from a practical point of view, based on the authors' industrial and academic experience in automotive engineering design Extensive practical examples are used to illustrate the main concepts in all chapters

Book Case Studies for Fatigue Education

Download or read book Case Studies for Fatigue Education written by Ralph Ivan Stephens and published by ASTM International. This book was released on 1994 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides engineering educators and students with a broad range of non- trivial, real-world fatigue problems/situations and solutions for use in the classroom. The 13 cases involve new designs, rework designs, failure analysis, prototype decisions, environmental aspects, metals, non-metals, components, structures, and fasteners. The cases bring out the need for students to integrate elements of engineering that commonly enter into a fatigue design or failure analysis. No index. Annotation copyright by Book News, Inc., Portland, OR

Book Fatigue Design and Reliability

Download or read book Fatigue Design and Reliability written by G. Marquis and published by Elsevier. This book was released on 1999-02-19 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume represents a selection of papers presented at the Third International Symposium on Fatigue Design, Fatigue Design 1998, held in Espoo, Finland, 26-29 May, 1998. One objective of this symposium series was to help bridge the gap that sometimes exists between researchers and engineers responsible for designing components against fatigue failure. The 21 selected papers provide an up-to-date survey of engineering practice and a preview of design methods that are advancing toward application. Reliability was selected as a key theme for FD'98. During the design of components and structures, it is not sufficient to combine mean material properties, average usage parameters, and pre-selected safety factors. The engineer must also consider potential scatter in material properties, different end users, manufacturing tolerances and uncertainties in fatigue damage models. Judgement must also be made about the consequences of potential failure and the required degree of reliability for the structure or component during its service life. Approaches to ensuring reliability may vary greatly depending on the structure being designed. Papers in this volume intentionally provide a multidisciplinary perspective on the issue. Authors represent the ground vehicle, heavy equipment, power generation, ship building and other industries. Identical solutions cannot be used in all cases because design methods must always provide a balance between accuracy and simplicity. The point of balance will shift depending on the type of input data available and the component being considered.

Book Proceedings of Fatigue  Durability and Fracture Mechanics

Download or read book Proceedings of Fatigue Durability and Fracture Mechanics written by S. Seetharamu and published by Springer. This book was released on 2017-11-01 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the proceedings of Fatigue Durability India 2016, which was held on September 28–30 at J N Tata Auditorium, Indian Institute of Science, Bangalore. This 2nd International Conference & Exhibition brought international industrial experts and academics together on a single platform to facilitate the exchange of ideas and advances in the field of fatigue, durability and fracture mechanics and its applications. This book comprises articles on a broad spectrum of topics from design, engineering, testing and computational evaluation of components and systems for fatigue, durability, and fracture mechanics. The topics covered include interdisciplinary discussions on working aspects related to materials testing, evaluation of damage, nondestructive testing (NDT), failure analysis, finite element modeling (FEM) analysis, fatigue and fracture, processing, performance, and reliability. The contents of this book will appeal not only to academic researchers, but also to design engineers, failure analysts, maintenance engineers, certification personnel, and R&D professionals involved in a wide variety of industries.

Book Metal Fatigue in Engineering

Download or read book Metal Fatigue in Engineering written by Ralph I. Stephens and published by John Wiley & Sons. This book was released on 2000-11-03 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classic, comprehensive, and up-to-date Metal Fatigue in Engineering Second Edition For twenty years, Metal Fatigue in Engineering has served as an important textbook and reference for students and practicing engineers concerned with the design, development, and failure analysis of components, structures, and vehicles subjected to repeated loading. Now this generously revised and expanded edition retains the best features of the original while bringing it up to date with the latest developments in the field. As with the First Edition, this book focuses on applied engineering design, with a view to producing products that are safe, reliable, and economical. It offers in-depth coverage of today's most common analytical methods of fatigue design and fatigue life predictions/estimations for metals. Contents are arranged logically, moving from simple to more complex fatigue loading and conditions. Throughout the book, there is a full range of helpful learning aids, including worked examples and hundreds of problems, references, and figures as well as chapter summaries and "design do's and don'ts" sections to help speed and reinforce understanding of the material. The Second Edition contains a vast amount of new information, including: * Enhanced coverage of micro/macro fatigue mechanisms, notch strain analysis, fatigue crack growth at notches, residual stresses, digital prototyping, and fatigue design of weldments * Nonproportional loading and critical plane approaches for multiaxial fatigue * A new chapter on statistical aspects of fatigue

Book Fatigue Design of Components

Download or read book Fatigue Design of Components written by G. Marquis and published by Elsevier. This book was released on 1997-12-10 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a selection of papers presented at Fatigue Design 95 held in Helsinki, Finland from 5-8 September 1995. The papers have been peer reviewed and present practical aspects for the design of components and structures to avoid fatigue failure. Topics covered include: fatigue design experiences, ground vehicle components, component reliability, multiaxial fatigue, notch analysis, service loading, welded structures, probabilistics aspects in fatigue, fatigue design optimization.

Book Fatigue Testing and Analysis of Results

Download or read book Fatigue Testing and Analysis of Results written by W. Weibull and published by Elsevier. This book was released on 2013-10-22 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fatigue Testing and Analysis of Results discusses fundamental concepts of fatigue testing and results analysis. The book begins with a description of the symbols and nomenclature selected for the present book, mainly those proposed by the ASTM Committee E-9 on Fatigue. Fatigue testing methods are then discussed including routine tests, short-life and long-life tests, cumulative-damage tests, and abbreviated and accelerated tests. Separate chapters cover fatigue testing machines and equipment; instruments and measuring devices; and test pieces used in fatigue testing. The factors affecting test results are considered, including material, types of stressing, test machine, environment, and testing technique. The final two chapters cover the planning of test programs and the presentation of results. Test program planning involves the statistical design of a test series; specification and sampling of test pieces; and choice of test pieces, testing machines, and test conditions. The chief purpose of most fatigue tests is the experimental determination of the relation between the endurance and the magnitude of the applied stress range for the material and the specimen under consideration, and final results can be condensed into a table, graph, or analytical expression.

Book Elements of Metallurgy and Engineering Alloys

Download or read book Elements of Metallurgy and Engineering Alloys written by Flake C. Campbell and published by ASM International. This book was released on 2008-01-01 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical reference provides thorough and systematic coverage on both basic metallurgy and the practical engineering aspects of metallic material selection and application.

Book A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints

Download or read book A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints written by C. E. Harris and published by . This book was released on 2000 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt: An extensive experimental database has been assembled from very detailed teardown examinations of fatigue cracks found in rivet holes of fuselage structural components. Based on this experimental database, a comprehensive analysis methodology was developed to predict the onset of widespread fatigue damage in lap joints of fuselage structure. Several computer codes were developed with specialized capabilities to conduct the various analyses that make up the comprehensive methodology. Over the past several years, the authors have interrogated various aspects of the analysis methods to determine the degree of computational rigor required to produce numerical predictions with acceptable engineering accuracy. This study led to the formulation of a practical engineering approach to predicting fatigue crack growth in riveted lap joints. This paper describes the practical engineering approach and compares predictions with the results from several experimental studies.

Book Structural Hot Spot Stress Approach to Fatigue Analysis of Welded Components

Download or read book Structural Hot Spot Stress Approach to Fatigue Analysis of Welded Components written by Erkki Niemi and published by Springer. This book was released on 2017-08-28 with total page 85 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides background and guidance on the use of the structural hot-spot stress approach to fatigue analysis. The book also offers Design S-N curves for use with the structural hot-spot stress for a range of weld details, and presents parametric formulas for calculating stress increases due to misalignment and structural discontinuities. Highlighting the extension to structures fabricated from plates and non-tubular sections. The structural hot-spot stress approach focuses on cases of potential fatigue cracking from the weld toe and it has been in use for many years in tubular joints. Following an explanation of the structural hot-spot stress, its definition and its relevance to fatigue, the book describes methods for its determination. It considers stress determination from both finite element analysis and strain gauge measurements, and emphasizes the use of finite element stress analysis, providing guidance on the choice of element type and size for use with either solid or shell elements. Lastly, it illustrates the use of the recommendations in four case studies involving the fatigue assessment of welded structures using the structural hot-spot stress