EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Faster Algorithms for Convex and Combinatorial Optimization

Download or read book Faster Algorithms for Convex and Combinatorial Optimization written by Yin Tat Lee and published by . This book was released on 2016 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis, we revisit three algorithmic techniques: sparsification, cutting and collapsing. We use them to obtain the following results on convex and combinatorial optimization: --Linear Programming: We obtain the first improvement to the running time for linear programming in 25 years. The convergence rate of this randomized algorithm nearly matches the universal barrier for interior point methods. As a corollary, we obtain the first ... time randomized algorithm for solving the maximum flow problem on directed graphs with m edges and n vertices. This improves upon the previous fastest running time of achieved over 15 years ago by Goldberg and Rao. --Maximum Flow Problem: We obtain one of the first almost-linear time randomized algorithms for approximating the maximum flow in undirected graphs. As a corollary, we improve the running time of a wide range of algorithms that use the computation of maximum flows as a subroutine. --Non-Smooth Convex Optimization: We obtain the first nearly-cubic time randomized algorithm for convex problems under the black box model. As a corollary, this implies a polynomially faster algorithm for three fundamental problems in computer science: submodular function minimization, matroid intersection, and semidefinite programming. --Graph Sparsification: We obtain the first almost-linear time randomized algorithm for spectrally approximating any graph by one with just a linear number of edges. This sparse graph approximately preserves all cut values of the original graph and is useful for solving a wide range of combinatorial problems. This algorithm improves all previous linear-sized constructions, which required at least quadratic time. --Numerical Linear Algebra: Multigrid is an efficient method for solving large-scale linear systems which arise from graphs in low dimensions. It has been used extensively for 30 years in scientific computing. Unlike the previous approaches that make assumptions on the graphs, we give the first generalization of the multigrid that provably solves Laplacian systems of any graphs in nearly-linear expected time.

Book Geometric Algorithms and Combinatorial Optimization

Download or read book Geometric Algorithms and Combinatorial Optimization written by Martin Grötschel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the publication of the first edition of our book, geometric algorithms and combinatorial optimization have kept growing at the same fast pace as before. Nevertheless, we do not feel that the ongoing research has made this book outdated. Rather, it seems that many of the new results build on the models, algorithms, and theorems presented here. For instance, the celebrated Dyer-Frieze-Kannan algorithm for approximating the volume of a convex body is based on the oracle model of convex bodies and uses the ellipsoid method as a preprocessing technique. The polynomial time equivalence of optimization, separation, and membership has become a commonly employed tool in the study of the complexity of combinatorial optimization problems and in the newly developing field of computational convexity. Implementations of the basis reduction algorithm can be found in various computer algebra software systems. On the other hand, several of the open problems discussed in the first edition are still unsolved. For example, there are still no combinatorial polynomial time algorithms known for minimizing a submodular function or finding a maximum clique in a perfect graph. Moreover, despite the success of the interior point methods for the solution of explicitly given linear programs there is still no method known that solves implicitly given linear programs, such as those described in this book, and that is both practically and theoretically efficient. In particular, it is not known how to adapt interior point methods to such linear programs.

Book Combinatorial Optimization

Download or read book Combinatorial Optimization written by Bernhard Korte and published by Springer Science & Business Media. This book was released on 2012-01-10 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive textbook on combinatorial optimization places special emphasis on theoretical results and algorithms with provably good performance, in contrast to heuristics. It is based on numerous courses on combinatorial optimization and specialized topics, mostly at graduate level. This book reviews the fundamentals, covers the classical topics (paths, flows, matching, matroids, NP-completeness, approximation algorithms) in detail, and proceeds to advanced and recent topics, some of which have not appeared in a textbook before. Throughout, it contains complete but concise proofs, and also provides numerous exercises and references. This fifth edition has again been updated, revised, and significantly extended, with more than 60 new exercises and new material on various topics, including Cayley's formula, blocking flows, faster b-matching separation, multidimensional knapsack, multicommodity max-flow min-cut ratio, and sparsest cut. Thus, this book represents the state of the art of combinatorial optimization.

Book Algorithms for Convex Optimization

Download or read book Algorithms for Convex Optimization written by Nisheeth K. Vishnoi and published by Cambridge University Press. This book was released on 2021-10-07 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last few years, Algorithms for Convex Optimization have revolutionized algorithm design, both for discrete and continuous optimization problems. For problems like maximum flow, maximum matching, and submodular function minimization, the fastest algorithms involve essential methods such as gradient descent, mirror descent, interior point methods, and ellipsoid methods. The goal of this self-contained book is to enable researchers and professionals in computer science, data science, and machine learning to gain an in-depth understanding of these algorithms. The text emphasizes how to derive key algorithms for convex optimization from first principles and how to establish precise running time bounds. This modern text explains the success of these algorithms in problems of discrete optimization, as well as how these methods have significantly pushed the state of the art of convex optimization itself.

Book Combinatorial Optimization and Graph Algorithms

Download or read book Combinatorial Optimization and Graph Algorithms written by Takuro Fukunaga and published by Springer. This book was released on 2017-10-02 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering network designs, discrete convex analysis, facility location and clustering problems, matching games, and parameterized complexity, this book discusses theoretical aspects of combinatorial optimization and graph algorithms. Contributions are by renowned researchers who attended NII Shonan meetings on this essential topic. The collection contained here provides readers with the outcome of the authors’ research and productive meetings on this dynamic area, ranging from computer science and mathematics to operations research. Networks are ubiquitous in today's world: the Web, online social networks, and search-and-query click logs can lead to a graph that consists of vertices and edges. Such networks are growing so fast that it is essential to design algorithms to work for these large networks. Graph algorithms comprise an area in computer science that works to design efficient algorithms for networks. Here one can work on theoretical or practical problems where implementation of an algorithm for large networks is needed. In two of the chapters, recent results in graph matching games and fixed parameter tractability are surveyed. Combinatorial optimization is an intersection of operations research and mathematics, especially discrete mathematics, which deals with new questions and new problems, attempting to find an optimum object from a finite set of objects. Most problems in combinatorial optimization are not tractable (i.e., NP-hard). Therefore it is necessary to design an approximation algorithm for them. To tackle these problems requires the development and combination of ideas and techniques from diverse mathematical areas including complexity theory, algorithm theory, and matroids as well as graph theory, combinatorics, convex and nonlinear optimization, and discrete and convex geometry. Overall, the book presents recent progress in facility location, network design, and discrete convex analysis.

Book Combinatorial Optimization

Download or read book Combinatorial Optimization written by Christos H. Papadimitriou and published by Courier Corporation. This book was released on 2013-04-26 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level text considers the Soviet ellipsoid algorithm for linear programming; efficient algorithms for network flow, matching, spanning trees, and matroids; the theory of NP-complete problems; local search heuristics for NP-complete problems, more. 1982 edition.

Book Combinatorial Optimization

Download or read book Combinatorial Optimization written by Christos H. Papadimitriou and published by . This book was released on 1982 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Christos H. Papadimitriou and Kenneth Steiglitz have combined the theory of computational complexity developed by computer scientists, and the foundations of mathematical programming developed by the operations research community. This text will be useful to students with a wide range of backgrounds, including computer science, operations research, and electrical engineering.

Book Handbook of combinatorial optimization  1

Download or read book Handbook of combinatorial optimization 1 written by Dingzhu Du and published by Springer Science & Business Media. This book was released on 1998 with total page 808 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first of a multi-volume set, which deals with several algorithmic approaches for discrete problems as well as many combinatorial problems. It is addressed to researchers in discrete optimization, and to all scientists who use combinatorial optimization methods to model and solve problems.

Book Large Scale Convex Optimization

Download or read book Large Scale Convex Optimization written by Ernest K. Ryu and published by Cambridge University Press. This book was released on 2022-12-01 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting from where a first course in convex optimization leaves off, this text presents a unified analysis of first-order optimization methods – including parallel-distributed algorithms – through the abstraction of monotone operators. With the increased computational power and availability of big data over the past decade, applied disciplines have demanded that larger and larger optimization problems be solved. This text covers the first-order convex optimization methods that are uniquely effective at solving these large-scale optimization problems. Readers will have the opportunity to construct and analyze many well-known classical and modern algorithms using monotone operators, and walk away with a solid understanding of the diverse optimization algorithms. Graduate students and researchers in mathematical optimization, operations research, electrical engineering, statistics, and computer science will appreciate this concise introduction to the theory of convex optimization algorithms.

Book Convex Optimization

Download or read book Convex Optimization written by Stephen P. Boyd and published by Cambridge University Press. This book was released on 2004-03-08 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

Book Computational Combinatorial Optimization

Download or read book Computational Combinatorial Optimization written by Michael Jünger and published by Springer. This book was released on 2001-01-01 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This tutorial contains written versions of seven lectures on Computational Combinatorial Optimization given by leading members of the optimization community. The lectures introduce modern combinatorial optimization techniques, with an emphasis on branch and cut algorithms and Lagrangian relaxation approaches. Polyhedral combinatorics as the mathematical backbone of successful algorithms are covered from many perspectives, in particular, polyhedral projection and lifting techniques and the importance of modeling are extensively discussed. Applications to prominent combinatorial optimization problems, e.g., in production and transport planning, are treated in many places; in particular, the book contains a state-of-the-art account of the most successful techniques for solving the traveling salesman problem to optimality.

Book Lectures on Convex Optimization

Download or read book Lectures on Convex Optimization written by Yurii Nesterov and published by Springer. This book was released on 2018-11-19 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive, modern introduction to convex optimization, a field that is becoming increasingly important in applied mathematics, economics and finance, engineering, and computer science, notably in data science and machine learning. Written by a leading expert in the field, this book includes recent advances in the algorithmic theory of convex optimization, naturally complementing the existing literature. It contains a unified and rigorous presentation of the acceleration techniques for minimization schemes of first- and second-order. It provides readers with a full treatment of the smoothing technique, which has tremendously extended the abilities of gradient-type methods. Several powerful approaches in structural optimization, including optimization in relative scale and polynomial-time interior-point methods, are also discussed in detail. Researchers in theoretical optimization as well as professionals working on optimization problems will find this book very useful. It presents many successful examples of how to develop very fast specialized minimization algorithms. Based on the author’s lectures, it can naturally serve as the basis for introductory and advanced courses in convex optimization for students in engineering, economics, computer science and mathematics.

Book Approximation Algorithms for Combinatorial Optimization

Download or read book Approximation Algorithms for Combinatorial Optimization written by Klaus Jansen and published by Springer. This book was released on 2003-07-31 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Third International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2000, held in Saarbrcken, Germany in September 2000. The 22 revised full papers presented together with four invited contributions were carefully reviewed and selected from 68 submissions. The topics dealt with include design and analysis of approximation algorithms, inapproximibility results, on-line problems, randomization techniques, average-case analysis, approximation classes, scheduling problems, routing and flow problems, coloring and partitioning, cuts and connectivity, packing and covering, geometric problems, network design, and various applications.

Book Efficient Approximation and Online Algorithms

Download or read book Efficient Approximation and Online Algorithms written by Evripidis Bampis and published by Springer Science & Business Media. This book was released on 2006-02-06 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a good opportunity for computer science practitioners and researchers to get in sync with current state-of-the-art and future trends in the field of combinatorial optimization and online algorithms. Recent advances in this area are presented focusing on the design of efficient approximation and on-line algorithms. One central idea in the book is to use a linear program relaxation of the problem, randomization and rounding techniques.

Book Handbook of Combinatorial Optimization

Download or read book Handbook of Combinatorial Optimization written by Ding-Zhu Du and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 650 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combinatorial (or discrete) optimization is one of the most active fields in the interface of operations research, computer science, and applied math ematics. Combinatorial optimization problems arise in various applications, including communications network design, VLSI design, machine vision, air line crew scheduling, corporate planning, computer-aided design and man ufacturing, database query design, cellular telephone frequency assignment, constraint directed reasoning, and computational biology. Furthermore, combinatorial optimization problems occur in many diverse areas such as linear and integer programming, graph theory, artificial intelligence, and number theory. All these problems, when formulated mathematically as the minimization or maximization of a certain function defined on some domain, have a commonality of discreteness. Historically, combinatorial optimization starts with linear programming. Linear programming has an entire range of important applications including production planning and distribution, personnel assignment, finance, alloca tion of economic resources, circuit simulation, and control systems. Leonid Kantorovich and Tjalling Koopmans received the Nobel Prize (1975) for their work on the optimal allocation of resources. Two important discover ies, the ellipsoid method (1979) and interior point approaches (1984) both provide polynomial time algorithms for linear programming. These algo rithms have had a profound effect in combinatorial optimization. Many polynomial-time solvable combinatorial optimization problems are special cases of linear programming (e.g. matching and maximum flow). In addi tion, linear programming relaxations are often the basis for many approxi mation algorithms for solving NP-hard problems (e.g. dual heuristics).

Book Combinatorial Algorithms for Optimization Problems

Download or read book Combinatorial Algorithms for Optimization Problems written by Edith Cohen and published by . This book was released on 1991 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: We introduce algorithms for solving linear systems where each inequality involves at most two variables. These algorithms improve over the sequential and parallel running times of previous algorithms. These results are combined with additional ideas to yield faster algorithms for some generalized network flow problems."

Book Convex Optimization Algorithms

Download or read book Convex Optimization Algorithms written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2015-02-01 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and accessible presentation of algorithms for solving convex optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. This is facilitated by the extensive use of analytical and algorithmic concepts of duality, which by nature lend themselves to geometrical interpretation. The book places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning. The book is aimed at students, researchers, and practitioners, roughly at the first year graduate level. It is similar in style to the author's 2009"Convex Optimization Theory" book, but can be read independently. The latter book focuses on convexity theory and optimization duality, while the present book focuses on algorithmic issues. The two books share notation, and together cover the entire finite-dimensional convex optimization methodology. To facilitate readability, the statements of definitions and results of the "theory book" are reproduced without proofs in Appendix B.