Download or read book Nonlinear Time Series written by Jiti Gao and published by CRC Press. This book was released on 2007-03-22 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Useful in the theoretical and empirical analysis of nonlinear time series data, semiparametric methods have received extensive attention in the economics and statistics communities over the past twenty years. Recent studies show that semiparametric methods and models may be applied to solve dimensionality reduction problems arising from using fully
Download or read book Empirical Asset Pricing written by Turan G. Bali and published by John Wiley & Sons. This book was released on 2016-02-26 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: “Bali, Engle, and Murray have produced a highly accessible introduction to the techniques and evidence of modern empirical asset pricing. This book should be read and absorbed by every serious student of the field, academic and professional.” Eugene Fama, Robert R. McCormick Distinguished Service Professor of Finance, University of Chicago and 2013 Nobel Laureate in Economic Sciences “The empirical analysis of the cross-section of stock returns is a monumental achievement of half a century of finance research. Both the established facts and the methods used to discover them have subtle complexities that can mislead casual observers and novice researchers. Bali, Engle, and Murray’s clear and careful guide to these issues provides a firm foundation for future discoveries.” John Campbell, Morton L. and Carole S. Olshan Professor of Economics, Harvard University “Bali, Engle, and Murray provide clear and accessible descriptions of many of the most important empirical techniques and results in asset pricing.” Kenneth R. French, Roth Family Distinguished Professor of Finance, Tuck School of Business, Dartmouth College “This exciting new book presents a thorough review of what we know about the cross-section of stock returns. Given its comprehensive nature, systematic approach, and easy-to-understand language, the book is a valuable resource for any introductory PhD class in empirical asset pricing.” Lubos Pastor, Charles P. McQuaid Professor of Finance, University of Chicago Empirical Asset Pricing: The Cross Section of Stock Returns is a comprehensive overview of the most important findings of empirical asset pricing research. The book begins with thorough expositions of the most prevalent econometric techniques with in-depth discussions of the implementation and interpretation of results illustrated through detailed examples. The second half of the book applies these techniques to demonstrate the most salient patterns observed in stock returns. The phenomena documented form the basis for a range of investment strategies as well as the foundations of contemporary empirical asset pricing research. Empirical Asset Pricing: The Cross Section of Stock Returns also includes: Discussions on the driving forces behind the patterns observed in the stock market An extensive set of results that serve as a reference for practitioners and academics alike Numerous references to both contemporary and foundational research articles Empirical Asset Pricing: The Cross Section of Stock Returns is an ideal textbook for graduate-level courses in asset pricing and portfolio management. The book is also an indispensable reference for researchers and practitioners in finance and economics. Turan G. Bali, PhD, is the Robert Parker Chair Professor of Finance in the McDonough School of Business at Georgetown University. The recipient of the 2014 Jack Treynor prize, he is the coauthor of Mathematical Methods for Finance: Tools for Asset and Risk Management, also published by Wiley. Robert F. Engle, PhD, is the Michael Armellino Professor of Finance in the Stern School of Business at New York University. He is the 2003 Nobel Laureate in Economic Sciences, Director of the New York University Stern Volatility Institute, and co-founding President of the Society for Financial Econometrics. Scott Murray, PhD, is an Assistant Professor in the Department of Finance in the J. Mack Robinson College of Business at Georgia State University. He is the recipient of the 2014 Jack Treynor prize.
Download or read book Asset Pricing written by John H. Cochrane and published by Princeton University Press. This book was released on 2009-04-11 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: Winner of the prestigious Paul A. Samuelson Award for scholarly writing on lifelong financial security, John Cochrane's Asset Pricing now appears in a revised edition that unifies and brings the science of asset pricing up to date for advanced students and professionals. Cochrane traces the pricing of all assets back to a single idea—price equals expected discounted payoff—that captures the macro-economic risks underlying each security's value. By using a single, stochastic discount factor rather than a separate set of tricks for each asset class, Cochrane builds a unified account of modern asset pricing. He presents applications to stocks, bonds, and options. Each model—consumption based, CAPM, multifactor, term structure, and option pricing—is derived as a different specification of the discounted factor. The discount factor framework also leads to a state-space geometry for mean-variance frontiers and asset pricing models. It puts payoffs in different states of nature on the axes rather than mean and variance of return, leading to a new and conveniently linear geometrical representation of asset pricing ideas. Cochrane approaches empirical work with the Generalized Method of Moments, which studies sample average prices and discounted payoffs to determine whether price does equal expected discounted payoff. He translates between the discount factor, GMM, and state-space language and the beta, mean-variance, and regression language common in empirical work and earlier theory. The book also includes a review of recent empirical work on return predictability, value and other puzzles in the cross section, and equity premium puzzles and their resolution. Written to be a summary for academics and professionals as well as a textbook, this book condenses and advances recent scholarship in financial economics.
Download or read book Derivatives and Hedge Funds written by Stephen Satchell and published by Springer. This book was released on 2016-05-18 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last 20 years hedge funds and derivatives have fluctuated in reputational terms; they have been blamed for the global financial crisis and been praised for the provision of liquidity in troubled times. Both topics are rather under-researched due to a combination of data and secrecy issues. This book is a collection of papers celebrating 20 years of the Journal of Derivatives and Hedge Funds (JDHF). The 18 papers included in this volume represent a small sample of influential papers included during the life of the Journal, representing industry-orientated research in these areas. With a Preface from co-editor of the journal Stephen Satchell, the first part of the collection focuses on hedge funds and the second on markets, prices and products.
Download or read book Empirical Asset Pricing written by Wayne Ferson and published by MIT Press. This book was released on 2019-03-12 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.
Download or read book Machine Learning for Factor Investing written by Guillaume Coqueret and published by CRC Press. This book was released on 2023-08-08 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning (ML) is progressively reshaping the fields of quantitative finance and algorithmic trading. ML tools are increasingly adopted by hedge funds and asset managers, notably for alpha signal generation and stocks selection. The technicality of the subject can make it hard for non-specialists to join the bandwagon, as the jargon and coding requirements may seem out-of-reach. Machine learning for factor investing: Python version bridges this gap. It provides a comprehensive tour of modern ML-based investment strategies that rely on firm characteristics. The book covers a wide array of subjects which range from economic rationales to rigorous portfolio back-testing and encompass both data processing and model interpretability. Common supervised learning algorithms such as tree models and neural networks are explained in the context of style investing and the reader can also dig into more complex techniques like autoencoder asset returns, Bayesian additive trees and causal models. All topics are illustrated with self-contained Python code samples and snippets that are applied to a large public dataset that contains over 90 predictors. The material, along with the content of the book, is available online so that readers can reproduce and enhance the examples at their convenience. If you have even a basic knowledge of quantitative finance, this combination of theoretical concepts and practical illustrations will help you learn quickly and deepen your financial and technical expertise.
Download or read book NBER Macroeconomics Annual 1992 written by Olivier Blanchard and published by MIT Press. This book was released on 1992 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the seventh in a series of annuals from the National Bureau of Economic Research that are designed to stimulate research on problems in applied economics, to bring frontier theoretical developments to a wider audience, and to accelerate the interaction between analytical and empirical research in macroeconomics. Contents What Shall We Do Today? Goals and Signposts in the Operation of Monetary Policy, Ben S. Bernanke and Frederic S. Mishkin - A Tale of Two Cities: Factor Accumulation and Technical Change in Hong Kong and Singapore, Alwyn Young - International Trade and the Wage Structure, Steven J. Davis - Imperfect Information and Macroeconomic Analysis, Joseph E. Stiglitz and Bruce Greenwald - Asset Pricing Lessons for Macroeconomics, Lars P. Hansen and John H. Cochrane - Postmortem on the Debt Crisis, Daniel Cohen
Download or read book Financial Market Contagion in the Asian Crisis written by Mr.Taimur Baig and published by International Monetary Fund. This book was released on 1998-11-01 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper tests for evidence of contagion between the financial markets of Thailand, Malaysia, Indonesia, Korea, and the Philippines. Cross-country correlations among currencies and sovereign spreads are found to increase significantly during the crisis period, whereas the equity market correlations offer mixed evidence. A set of dummy variables using daily news is constructed to capture the impact of own-country and cross-border news on the markets. After controlling for own-country news and other fundamentals, the paper shows evidence of cross-border contagion in the currency and equity markets.
Download or read book Econometric Analysis of Cross Section and Panel Data second edition written by Jeffrey M. Wooldridge and published by MIT Press. This book was released on 2010-10-01 with total page 1095 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of a comprehensive state-of-the-art graduate level text on microeconometric methods, substantially revised and updated. The second edition of this acclaimed graduate text provides a unified treatment of two methods used in contemporary econometric research, cross section and data panel methods. By focusing on assumptions that can be given behavioral content, the book maintains an appropriate level of rigor while emphasizing intuitive thinking. The analysis covers both linear and nonlinear models, including models with dynamics and/or individual heterogeneity. In addition to general estimation frameworks (particular methods of moments and maximum likelihood), specific linear and nonlinear methods are covered in detail, including probit and logit models and their multivariate, Tobit models, models for count data, censored and missing data schemes, causal (or treatment) effects, and duration analysis. Econometric Analysis of Cross Section and Panel Data was the first graduate econometrics text to focus on microeconomic data structures, allowing assumptions to be separated into population and sampling assumptions. This second edition has been substantially updated and revised. Improvements include a broader class of models for missing data problems; more detailed treatment of cluster problems, an important topic for empirical researchers; expanded discussion of "generalized instrumental variables" (GIV) estimation; new coverage (based on the author's own recent research) of inverse probability weighting; a more complete framework for estimating treatment effects with panel data, and a firmly established link between econometric approaches to nonlinear panel data and the "generalized estimating equation" literature popular in statistics and other fields. New attention is given to explaining when particular econometric methods can be applied; the goal is not only to tell readers what does work, but why certain "obvious" procedures do not. The numerous included exercises, both theoretical and computer-based, allow the reader to extend methods covered in the text and discover new insights.
Download or read book A New Model of Capital Asset Prices written by James W. Kolari and published by Springer Nature. This book was released on 2021-03-01 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book proposes a new capital asset pricing model dubbed the ZCAPM that outperforms other popular models in empirical tests using US stock returns. The ZCAPM is derived from Fischer Black’s well-known zero-beta CAPM, itself a more general form of the famous capital asset pricing model (CAPM) by 1990 Nobel Laureate William Sharpe and others. It is widely accepted that the CAPM has failed in its theoretical relation between market beta risk and average stock returns, as numerous studies have shown that it does not work in the real world with empirical stock return data. The upshot of the CAPM’s failure is that many new factors have been proposed by researchers. However, the number of factors proposed by authors has steadily increased into the hundreds over the past three decades. This new ZCAPM is a path-breaking asset pricing model that is shown to outperform popular models currently in practice in finance across different test assets and time periods. Since asset pricing is central to the field of finance, it can be broadly employed across many areas, including investment analysis, cost of equity analyses, valuation, corporate decision making, pension portfolio management, etc. The ZCAPM represents a revolution in finance that proves the CAPM as conceived by Sharpe and others is alive and well in a new form, and will certainly be of interest to academics, researchers, students, and professionals of finance, investing, and economics.
Download or read book Artificial Intelligence in Asset Management written by Söhnke M. Bartram and published by CFA Institute Research Foundation. This book was released on 2020-08-28 with total page 95 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial intelligence (AI) has grown in presence in asset management and has revolutionized the sector in many ways. It has improved portfolio management, trading, and risk management practices by increasing efficiency, accuracy, and compliance. In particular, AI techniques help construct portfolios based on more accurate risk and return forecasts and more complex constraints. Trading algorithms use AI to devise novel trading signals and execute trades with lower transaction costs. AI also improves risk modeling and forecasting by generating insights from new data sources. Finally, robo-advisors owe a large part of their success to AI techniques. Yet the use of AI can also create new risks and challenges, such as those resulting from model opacity, complexity, and reliance on data integrity.
Download or read book Econometrics with Machine Learning written by Felix Chan and published by Springer Nature. This book was released on 2022-09-07 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book helps and promotes the use of machine learning tools and techniques in econometrics and explains how machine learning can enhance and expand the econometrics toolbox in theory and in practice. Throughout the volume, the authors raise and answer six questions: 1) What are the similarities between existing econometric and machine learning techniques? 2) To what extent can machine learning techniques assist econometric investigation? Specifically, how robust or stable is the prediction from machine learning algorithms given the ever-changing nature of human behavior? 3) Can machine learning techniques assist in testing statistical hypotheses and identifying causal relationships in ‘big data? 4) How can existing econometric techniques be extended by incorporating machine learning concepts? 5) How can new econometric tools and approaches be elaborated on based on machine learning techniques? 6) Is it possible to develop machine learning techniques further and make them even more readily applicable in econometrics? As the data structures in economic and financial data become more complex and models become more sophisticated, the book takes a multidisciplinary approach in developing both disciplines of machine learning and econometrics in conjunction, rather than in isolation. This volume is a must-read for scholars, researchers, students, policy-makers, and practitioners, who are using econometrics in theory or in practice.
Download or read book Machine Learning and Data Sciences for Financial Markets written by Agostino Capponi and published by Cambridge University Press. This book was released on 2023-04-30 with total page 742 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leveraging the research efforts of more than sixty experts in the area, this book reviews cutting-edge practices in machine learning for financial markets. Instead of seeing machine learning as a new field, the authors explore the connection between knowledge developed by quantitative finance over the past forty years and techniques generated by the current revolution driven by data sciences and artificial intelligence. The text is structured around three main areas: 'Interactions with investors and asset owners,' which covers robo-advisors and price formation; 'Risk intermediation,' which discusses derivative hedging, portfolio construction, and machine learning for dynamic optimization; and 'Connections with the real economy,' which explores nowcasting, alternative data, and ethics of algorithms. Accessible to a wide audience, this invaluable resource will allow practitioners to include machine learning driven techniques in their day-to-day quantitative practices, while students will build intuition and come to appreciate the technical tools and motivation for the theory.
Download or read book Strategic Asset Allocation written by John Y. Campbell and published by OUP Oxford. This book was released on 2002-01-03 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Academic finance has had a remarkable impact on many financial services. Yet long-term investors have received curiously little guidance from academic financial economists. Mean-variance analysis, developed almost fifty years ago, has provided a basic paradigm for portfolio choice. This approach usefully emphasizes the ability of diversification to reduce risk, but it ignores several critically important factors. Most notably, the analysis is static; it assumes that investors care only about risks to wealth one period ahead. However, many investors—-both individuals and institutions such as charitable foundations or universities—-seek to finance a stream of consumption over a long lifetime. In addition, mean-variance analysis treats financial wealth in isolation from income. Long-term investors typically receive a stream of income and use it, along with financial wealth, to support their consumption. At the theoretical level, it is well understood that the solution to a long-term portfolio choice problem can be very different from the solution to a short-term problem. Long-term investors care about intertemporal shocks to investment opportunities and labor income as well as shocks to wealth itself, and they may use financial assets to hedge their intertemporal risks. This should be important in practice because there is a great deal of empirical evidence that investment opportunities—-both interest rates and risk premia on bonds and stocks—-vary through time. Yet this insight has had little influence on investment practice because it is hard to solve for optimal portfolios in intertemporal models. This book seeks to develop the intertemporal approach into an empirical paradigm that can compete with the standard mean-variance analysis. The book shows that long-term inflation-indexed bonds are the riskless asset for long-term investors, it explains the conditions under which stocks are safer assets for long-term than for short-term investors, and it shows how labor income influences portfolio choice. These results shed new light on the rules of thumb used by financial planners. The book explains recent advances in both analytical and numerical methods, and shows how they can be used to understand the portfolio choice problems of long-term investors.
Download or read book Asset Management written by Andrew Ang and published by Oxford University Press, USA. This book was released on 2014 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stocks and bonds? Real estate? Hedge funds? Private equity? If you think those are the things to focus on in building an investment portfolio, Andrew Ang has accumulated a body of research that will prove otherwise. In this book, Ang upends the conventional wisdom about asset allocation by showing that what matters aren't asset class labels but the bundles of overlapping risks they represent.
Download or read book Expectations and the Structure of Share Prices written by John G. Cragg and published by University of Chicago Press. This book was released on 2009-05-15 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: John G. Cragg and Burton G. Malkiel collected detailed forecasts of professional investors concerning the growth of 175 companies and use this information to examine the impact of such forecasts on the market evaluations of the companies and to test and extend traditional models of how stock market values are determined.
Download or read book Big Data Science in Finance written by Irene Aldridge and published by John Wiley & Sons. This book was released on 2021-01-08 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains the mathematics, theory, and methods of Big Data as applied to finance and investing Data science has fundamentally changed Wall Street—applied mathematics and software code are increasingly driving finance and investment-decision tools. Big Data Science in Finance examines the mathematics, theory, and practical use of the revolutionary techniques that are transforming the industry. Designed for mathematically-advanced students and discerning financial practitioners alike, this energizing book presents new, cutting-edge content based on world-class research taught in the leading Financial Mathematics and Engineering programs in the world. Marco Avellaneda, a leader in quantitative finance, and quantitative methodology author Irene Aldridge help readers harness the power of Big Data. Comprehensive in scope, this book offers in-depth instruction on how to separate signal from noise, how to deal with missing data values, and how to utilize Big Data techniques in decision-making. Key topics include data clustering, data storage optimization, Big Data dynamics, Monte Carlo methods and their applications in Big Data analysis, and more. This valuable book: Provides a complete account of Big Data that includes proofs, step-by-step applications, and code samples Explains the difference between Principal Component Analysis (PCA) and Singular Value Decomposition (SVD) Covers vital topics in the field in a clear, straightforward manner Compares, contrasts, and discusses Big Data and Small Data Includes Cornell University-tested educational materials such as lesson plans, end-of-chapter questions, and downloadable lecture slides Big Data Science in Finance: Mathematics and Applications is an important, up-to-date resource for students in economics, econometrics, finance, applied mathematics, industrial engineering, and business courses, and for investment managers, quantitative traders, risk and portfolio managers, and other financial practitioners.