EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Metal Oxide Based Thin Film Structures

Download or read book Metal Oxide Based Thin Film Structures written by Nini Pryds and published by Elsevier. This book was released on 2017-09-07 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxide-Based Thin Film Structures: Formation, Characterization and Application of Interface-Based Phenomena bridges the gap between thin film deposition and device development by exploring the synthesis, properties and applications of thin film interfaces. Part I deals with theoretical and experimental aspects of epitaxial growth, the structure and morphology of oxide-metal interfaces deposited with different deposition techniques and new developments in growth methods. Part II concerns analysis techniques for the electrical, optical, magnetic and structural properties of thin film interfaces. In Part III, the emphasis is on ionic and electronic transport at the interfaces of Metal-oxide thin films. Part IV discusses methods for tailoring metal oxide thin film interfaces for specific applications, including microelectronics, communication, optical electronics, catalysis, and energy generation and conservation. This book is an essential resource for anyone seeking to further their knowledge of metal oxide thin films and interfaces, including scientists and engineers working on electronic devices and energy systems and those engaged in research into electronic materials. - Introduces the theoretical and experimental aspects of epitaxial growth for the benefit of readers new to the field - Explores state-of-the-art analysis techniques and their application to interface properties in order to give a fuller understanding of the relationship between macroscopic properties and atomic-scale manipulation - Discusses techniques for tailoring thin film interfaces for specific applications, including information, electronics and energy technologies, making this book essential reading for materials scientists and engineers alike

Book Solution Processed Metal Oxide Thin Films for Electronic Applications

Download or read book Solution Processed Metal Oxide Thin Films for Electronic Applications written by Zheng Cui and published by Elsevier. This book was released on 2020-06-11 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solution Processed Metal Oxide Thin Films for Electronic Applications discusses the fundamentals of solution processing materials chemistry techniques as they are applied to metal oxide materials systems for key device applications. The book introduces basic information (materials properties, materials synthesis, barriers), discusses ink formulation and solution processing methods, including sol-gel processing, surface functionalization aspects, and presents a comprehensive accounting on the electronic applications of solution processed metal oxide films, including thin film transistors, photovoltaic cells and other electronics devices and circuits. This is an important reference for those interested in oxide electronics, printed electronics, flexible electronics and large-area electronics. - Provides in-depth information on solution processing fundamentals, techniques, considerations and barriers combined with key device applications - Reviews important device applications, including transistors, light-emitting diodes, and photovoltaic cells - Includes an overview of metal oxide materials systems (semiconductors, nanomaterials and thin films), addressing materials synthesis, properties, limitations and surface aspects

Book Semiconducting Metal Oxide Thin Film Transistors

Download or read book Semiconducting Metal Oxide Thin Film Transistors written by ZHOU and published by Myprint. This book was released on 2020-12-29 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Semiconducting Metal Oxide Thin film Transistors

Download or read book Semiconducting Metal Oxide Thin film Transistors written by Ye Zhou (Semiconductor engineer) and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconducting metal oxide thin-film transistors (TFTs) are promising candidates for functional electronic devices. This reference text covers the latest developments in the field, including the design, materials characteristics, device operation principles, specialised device applications and mechanisms, including the latest semiconducting TFT technologies. The book introduces the concepts and working mechanisms of semiconducting metal oxide TFTs, with a focus on metal oxide thin films that have desirable electrical and optical properties. The relationship between material properties and device performance is analysed, and materials and device challenges, as well as possible strategies, are discussed.

Book Solution Processed Post transition Metal Oxide Thin Film Transistors  Understanding Fabrication Challenges and Transport Mechanism

Download or read book Solution Processed Post transition Metal Oxide Thin Film Transistors Understanding Fabrication Challenges and Transport Mechanism written by Richa Sharma and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Low Temperature UV Assisted Fabrication of Metal Oxide Thin Film Transistor

Download or read book Low Temperature UV Assisted Fabrication of Metal Oxide Thin Film Transistor written by Shuanglin Zhu Zhu and published by . This book was released on 2017 with total page 50 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solution processed metal oxide semiconductors have attracted intensive attention in the last several decades and have emerged as a promising candidate for the application of thin film transistor (TFT) due to their nature of transparency, flexibility, high mobility, simple processing technique and potential low manufacturing cost. However, metal oxide thin film fabricated by solution process usually requires a high temperature (over 300 i C), which is above the glass transition temperature of some conventional polymer substrates. In order to fabricate the flexible electronic device on polymer substrates, it is necessary to find a facile approach to lower the fabrication temperature and minimize defects in metal oxide thin film. In this thesis, the electrical properties dependency on temperature is discussed and an UV-assisted annealing method incorporating Deep ultraviolet (DUV)-decomposable additives is demonstrated, which can effectively improve electrical properties solution processed metal oxide semiconductors processed at temperature as low as 220 i C. By studying a widely used indium oxide (In2O3) TFT as a model system, it is worth noted that compared with the sample without UV treatment, the linear mobility and saturation mobility of UV-annealing sample are improved by 56% and 40% respectively. Meanwhile, the subthreshold swing is decreased by 32%, indicating UV-treated device could turn on and off more efficiently. In addition to pure In2O3 film, the similar phenomena have also been observed in indium oxide based Indium-Gallium-Zinc Oxide (IGZO) system. These finding presented in this thesis suggest that the UV assisted annealing process open a new route to fabricate high performance metal oxide semiconductors under low temperatures.

Book Organic Thin Film Transistor Applications

Download or read book Organic Thin Film Transistor Applications written by Brajesh Kumar Kaushik and published by CRC Press. This book was released on 2016-09-15 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Text provides information about advanced OTFT (Organic thin film transistor) structures, their modeling and extraction of performance parameters, materials of individual layers, their molecular structures, basics of pi-conjugated semiconducting materials and their properties, OTFT charge transport phenomena and fabrication techniques. It includes applications of OTFTs such as single and dual gate OTFT based inverter circuits along with bootstrap techniques, SRAM cell designs based on different material and circuit configurations, light emitting diodes (LEDs). Besides this, application of dual gate OTFT in the logic gate, shift register, Flip-Flop, counter circuits will be included as well.

Book Metal Oxide Thin Film Transistors on Paper Substrate  Fabrication  Characterization  and Printing Process

Download or read book Metal Oxide Thin Film Transistors on Paper Substrate Fabrication Characterization and Printing Process written by Nack-Bong Choi and published by . This book was released on 2012 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work validates the compatibility of a-IGZO TFT on paper substrate for the disposable microelectronics application and presents the potential of low-cost and high resolution printing technology.

Book Solution Processed Organic Semiconductor Thin film Transistors for Flexible Electronics

Download or read book Solution Processed Organic Semiconductor Thin film Transistors for Flexible Electronics written by Zihong Liu and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic or carbon electronics has been a fast-growing field in recent years covering a broad range from nanoelectronic devices to macroelectronic systems. Besides the single-graphene or single-carbon nanotube transistor toward extending the scaling limit of traditional silicon metal-oxide-semiconductor field-effect transistor (MOSFET), organic semiconductor based thin-film transistors have been actively investigated due to their promise in large-area electronics fabricated on flexible substrates using low-cost unconventional means, such as low/room-temperature printing and roll-to-roll processing. This dissertation focuses on the study of device physics, device modeling, fabrication technology, and interface engineering for solution-processed organic field-effect transistors (SPOFET) for flexible electronics applications. There are primarily four parts of contributions originated from this dissertation work. The first part introduces the design and demonstration of high-performance, low-voltage flexible SPOFETs fabricated on plastic substrates with a carrier mobility over 0.2 cm2/Vs, a turn-on voltage of near 0 V, and a record low subthreshold slope of ~80 mV/dec in ambient conditions. These exceptional characteristics are achieved by novel device architecture design, 3-D statistical modeling for solution-shearing process optimization, and phenyl-terminated self-assembled monolayer (SAM) based interface engineering. In the second part, SAM relevant physical effects and chemistry effects at the organic semiconductor-dielectric interface are systematically investigated. Through careful selection of a group of phenyl-terminated SAMs, we elucidate how the performance and reliability of organic transistors are controlled by the critical semiconductor-dielectric interfacial SAMs. In addition, we briefly introduce a spin-coating process for depositing high-quality phenyl-terminated SAMs for organic electronics applications. The third part focuses on the device physics and device modeling of organic transistors. In this dissertation work, we have proposed and developed a universal physical model for organic transistors by incorporating both the charge injection effects and charge transport properties, and successfully applied it to resolve many elusive physical phenomena observed so far, such as the peculiar mobility scaling behavior with respect to the channel length, the contact resistance effect, and the mysterious surface potential profiles of organic transistors which have been experimentally probed yet poorly understood. Of particular importance is that we discover an overshoot region in the mobility scaling behavior and identified the existence of a critical channel length for the peak field-effect mobility. In the last part, we investigate novel contact engineering for organic transistors toward lowering charge injection barrier and reducing the interfacial disorder width or localization states. We have explored and demonstrated Fermi-level depinning at the metal-organic interface for low-resistance Ohmic contacts by inserting an ultrathin interfacial Si3N4 insulator in between. The contact behavior is successfully tuned from rectifying to quasi-Ohmic and to tunneling by varying the Si3N4 thickness within 0-6 nm. Detailed physical mechanisms of Fermi-level pinning/depinning responsible for the metal-organic semiconductor contact behavior are clarified based on a proposed lumped-dipole model.

Book Organic Thin Film Transistor Integration

Download or read book Organic Thin Film Transistor Integration written by Flora Li and published by John Wiley & Sons. This book was released on 2011-03-21 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research on organic electronics (or plastic electronics) is driven by the need to create systems that are lightweight, unbreakable, and mechanically flexible. With the remarkable improvement in the performance of organic semiconductor materials during the past few decades, organic electronics appeal to innovative, practical, and broad-impact applications requiring large-area coverage, mechanical flexibility, low-temperature processing, and low cost. Thus, organic electronics appeal to a broad range of electronic devices and products including transistors, diodes, sensors, solar cells, lighting, displays, and electronic identification and tracking devices A number of commercial opportunities have been identified for organic thin film transistors (OTFTs), ranging from flexible displays, electronic paper, radio-frequency identification (RFID) tags, smart cards, to low-cost disposable electronic products, and more are continually being invented as the technology matures. The potential applications for "plastic electronics" are huge but several technological hurdles must be overcome. In many of these applications, transistor serves as a fundamental building block to implement the necessary electronic functionality. Hence, research in organic thin film transistors (OTFTs) or organic field effect transistors (OFETs) is eminently pertinent to the development and realization of organic electronics. This book presents a comprehensive investigation of the production and application of a variety of polymer based transistor devices and circuits. It begins with a detailed overview of Organic Thin Film Transistors (OTFTs) and discusses the various possible fabrication methods reported so far. This is followed by two major sections on the choice, optimization and implementation of the gate dielectric material to be used. Details of the effects of processing on the efficiency of the contacts are then provided. The book concludes with a chapter on the integration of such devices to produce a variety of OTFT based circuits and systems. The key objective is to examine strategies to exploit existing materials and techniques to advance OTFT technology in device performance, device manufacture, and device integration. Finally, the collective knowledge from these investigations facilitates the integration of OTFTs into organic circuits, which is expected to contribute to the development of new generation of all-organic displays for communication devices and other pertinent applications. Overall, a major outcome of this work is that it provides an economical means for organic transistor and circuit integration, by enabling the use of a well-established PECVD infrastructure, while not compromising the performance of electronics. The techniques established here are not limited to use in OTFTs only; the organic semiconductor and SiNx combination can be used in other device structures (e.g., sensors, diodes, photovoltaics). Furthermore, the approach and strategy used for interface optimization can be extended to the development of other materials systems.

Book High Performance Metal Oxide Thin Film Transistors Via Cluster Control and Interface Engineering

Download or read book High Performance Metal Oxide Thin Film Transistors Via Cluster Control and Interface Engineering written by Zhengxu Wang and published by . This book was released on 2020 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Around 100 years has passed since the first cathode ray tube has been fabricated. Fast and free transition of graphs provided much convenience for human communication. Generations of display were developed and flat panel display (FPD) techniques are developing tremendously recently. Various demands are raised including high definition, large area, flexibility, etc. Backplane need improving to meet these, especially the thin film transistor (TFT) units. High mobility, easy process and good interfaces are desired. Solution processed amorphous InGaZnO proves a competitive candidate for TFT semiconductor materials. Its electronic performance, uniformity and switching properties turned out among the best. However, problems remain to be solved including mechanism interpretation, precursor control, morphology and interface. Chapter 1 will introduce the history and state of art of TFT in more details. In the following parts of this dissertation, I'll discuss the electronic behavior, morphology and interface of IGZO TFT. In Chapter 2, we performed gated four-probe measurements to extract the intrinsic mobility and contact resistance as functions of gate voltage and temperature. Contact resistance was proved to play a major role in mobility degradation at high gate bias, whereas, band-like transport dominates. We proposed UV-O3 which modified the contact regions and mobility was boosted from 23 to 30 cm2/Vs. In Chapter 3, clusters in precursor solution, which has critical effects on morphology, are discussed. Cluster size distribution was narrowed and size was brought down by acac. Small roughness of metal oxide was achieved and saturated mobility increased from 4.0 to 5.5 cm2/Vs. In a positive bias stress test, turn on voltage shift decreased from 1.6 to 0.3 V/10000s. Cluster size control is a promising way to tune the morphology of solution processed metal oxide film. Small sized high definition display is placing more challenge on backplane TFTs. IGZO is one of the candidates but the unsatisfactory performance of small sized IGZO TFTs is limiting their applicability. Hence, a novel weak acid modification (WAM) strategy was introduced to generate more oxygen vacancies for higher mobility, and to lower the surface roughness. Electrode-IGZO contact was enhanced. Contact resistance was reduced from 9.1 k mm to 2.3 k mm, as measured by the gated four probe (GFP) method. Field effect mobility for small sized devices was boosted from 1.5 cm2/Vs to 4.0 cm2/Vs. Additionally, a 12 12 transistor and organic light emission diode array built from the modified IGZO TFT devices has been demonstrated.

Book Short Channel Organic Thin Film Transistors

Download or read book Short Channel Organic Thin Film Transistors written by Tarek Zaki and published by Springer. This book was released on 2016-10-13 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work takes advantage of high-resolution silicon stencil masks to build air-stable complementary OTFTs using a low-temperature fabrication process. Plastic electronics based on organic thin-film transistors (OTFTs) pave the way for cheap, flexible and large-area products. Over the past few years, OTFTs have undergone remarkable advances in terms of reliability, performance and scale of integration. Many factors contribute to the allure of this technology; the masks exhibit excellent stiffness and stability, thus allowing OTFTs with submicrometer channel lengths and superb device uniformity to be patterned. Furthermore, the OTFTs employ an ultra-thin gate dielectric that provides a sufficiently high capacitance to enable the transistors to operate at voltages as low as 3 V. The critical challenges in this development are the subtle mechanisms that govern the properties of aggressively scaled OTFTs. These mechanisms, dictated by device physics, are well described and implemented into circuit-design tools to ensure adequate simulation accuracy.