EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fabrication and Surface Functionalization of Nanoporous Gold by Electrochemical Alloyin Dealloying of Au Zn in an Ionic Liquid  and the Self Assembly of L Cysteine Monolayers

Download or read book Fabrication and Surface Functionalization of Nanoporous Gold by Electrochemical Alloyin Dealloying of Au Zn in an Ionic Liquid and the Self Assembly of L Cysteine Monolayers written by and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Springer Handbook of Nanomaterials

Download or read book Springer Handbook of Nanomaterials written by Robert Vajtai and published by Springer Science & Business Media. This book was released on 2013-08-20 with total page 1234 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Springer Handbook of Nanomaterials covers the description of materials which have dimension on the "nanoscale". The description of the nanomaterials in this Handbook follows the thorough but concise explanation of the synergy of structure, properties, processing and applications of the given material. The Handbook mainly describes materials in their solid phase; exceptions might be e.g. small sized liquid aerosols or gas bubbles in liquids. The materials are organized by their dimensionality. Zero dimensional structures collect clusters, nanoparticles and quantum dots, one dimensional are nanowires and nanotubes, while two dimensional are represented by thin films and surfaces. The chapters in these larger topics are written on a specific materials and dimensionality combination, e.g. ceramic nanowires. Chapters are authored by well-established and well-known scientists of the particular field. They have measurable part of publications and an important role in establishing new knowledge of the particular field.

Book TMS 2018 147th Annual Meeting   Exhibition Supplemental Proceedings

Download or read book TMS 2018 147th Annual Meeting Exhibition Supplemental Proceedings written by The Minerals, Metals & Materials Society and published by Springer. This book was released on 2018-02-03 with total page 898 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection features papers presented at the 147th Annual Meeting & Exhibition of The Minerals, Metals & Materials Society.

Book Practical Implementations of Additive Manufacturing Technologies

Download or read book Practical Implementations of Additive Manufacturing Technologies written by Shashanka Rajendrachari and published by Springer Nature. This book was released on 2023-09-30 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives in-depth information about evolution of additive manufacturing from a few decades to the present explaining how the technology has been improved with time and its practical implementation of the technology in various applications and industries. It describes the different types of additive manufacturing methods used to prepare materials and their advantages, followed by the limitations. This includes the fabrication of metal, polymer, biomaterial, hybrid nanomaterial, smart material, and ceramic materials using additive manufacturing methods used in many applications such as 3D printed batteries, supercapacitors, electrochemical sensors, biosensors, aircraft interior components, rocket engines components, automobile components, and medical implants. It also describes advanced applications of additive manufacturing materials in the construction, biomedical, and sports industries. In addition, the book also deep dives into the environmental impact and economic benefits of additive manufacturing industries. A special chapter is included to give an overview on the general type of job opportunities for engineering graduates and research scholars seeking to find employment in additive manufacturing companies. In short, the content of this book targets primarily researchers, engineering students (bachelors and masters), and industrial engineers.

Book Mesoporous Materials for Advanced Energy Storage and Conversion Technologies

Download or read book Mesoporous Materials for Advanced Energy Storage and Conversion Technologies written by San Ping Jiang and published by CRC Press. This book was released on 2017-05-25 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Innovation through specific and rational design and functionalization has led to the development of a wide range of mesoporous materials with varying morphologies (hexagonal, cubic, rod-like), structures (silicates, carbons, metal oxides), and unique functionalities (doping, acid functionalization) that currently makes this field one of the most exciting in materials science and energy applications. This book focuses primarily on the rapid progress in their application in energy conversion and storage technologies, including supercapacitor, Li-ion battery, fuel cells, solar cells, and photocatalysis (water splitting) and will serve as a valuable reference for researchers in the field

Book Nanoporous Metals for Advanced Energy Technologies

Download or read book Nanoporous Metals for Advanced Energy Technologies written by Yi Ding and published by Springer. This book was released on 2016-03-19 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the state-of-the-art research in nanoporous metals for potential applications in advanced energy fields, including proton exchange membrane fuel cells, Li batteries (Li ion, Li-S, and Li-O2), and supercapacitors. The related structural design and performance of nanoporous metals as well as possible mechanisms and challenges are fully addressed. The formation mechanisms of nanoporous metals during dealloying, the microstructures of nanoporous metals and characterization methods, as well as miscrostructural regulation of nanoporous metals through alloy design of precursors and surface diffusion control are also covered in detail. This is an ideal book for researchers, engineers, graduate students, and government/industry officers who are in charge of R&D investments and strategy related to energy technologies.

Book Nanostructured Materials

Download or read book Nanostructured Materials written by Carl C. Koch and published by William Andrew. This book was released on 2006-12-01 with total page 785 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured materials are one of the highest profile classes of materials in science and engineering today, and will continue to be well into the future. Potential applications are widely varied, including washing machine sensors, drug delivery devices to combat avian flu, and more efficient solar panels. Broad and multidisciplinary, the field includes multilayer films, atomic clusters, nanocrystalline materials, and nanocomposites having remarkable variations in fundamental electrical, optic, and magnetic properties.Nanostructured Materials: Processing, Properties and Applications, 2nd Edition is an extensive update to the exceptional first edition snapshot of this rapidly advancing field. Retaining the organization of the first edition, Part 1 covers the important synthesis and processing methods for the production of nanocrystalline materials. Part 2 focuses on selected properties of nanostructured materials. Potential or existing applications are described as appropriate throughout the book. The second edition has been updated throughout for the latest advances and includes two additional chapters.

Book Biosensors     Recent Advances and Future Challenges

Download or read book Biosensors Recent Advances and Future Challenges written by Paolo Bollella and published by MDPI. This book was released on 2021-01-27 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present book is devoted to all aspects of biosensing in a very broad definition, including, but not limited to, biomolecular composition used in biosensors (e.g., biocatalytic enzymes, DNAzymes, abiotic nanospecies with biocatalytic features, bioreceptors, DNA/RNA, aptasensors, etc.), physical signal transduction mechanisms (e.g., electrochemical, optical, magnetic, etc.), engineering of different biosensing platforms, operation of biosensors in vitro and in vivo (implantable or wearable devices), self-powered biosensors, etc. The biosensors can be represented with analogue devices measuring concentrations of analytes and binary devices operating in the YES/NO format, possibly with logical processing of input signals. Furthermore, the book is aimed at attracting young scientists and introducing them to the field, while providing newcomers with an enormous collection of literature references.

Book Handbook Of Porous Materials  Synthesis  Properties  Modeling And Key Applications  In 4 Volumes

Download or read book Handbook Of Porous Materials Synthesis Properties Modeling And Key Applications In 4 Volumes written by and published by World Scientific. This book was released on 2020-10-20 with total page 1495 pages. Available in PDF, EPUB and Kindle. Book excerpt: This four-volume handbook gives a state-of-the-art overview of porous materials, from synthesis and characterization and simulation all the way to manufacturing and industrial applications. The editors, coming from academia and industry, are known for their didactic skills as well as their technical expertise. Coordinating the efforts of 37 expert authors in 14 chapters, they construct the story of porous carbons, ceramics, zeolites and polymers from varied viewpoints: surface and colloidal science, materials science, chemical engineering, and energy engineering. Volumes 1 and 2 cover the fundamentals of preparation, characterisation, and simulation of porous materials. Working from the fundamentals all the way to the practicalities of industrial production processes, the subjects include hierarchical materials, in situ and operando characterisation using NMR, X-Ray scattering and tomography, state-of-the-art molecular simulations of adsorption and diffusion in crystalline nanoporous materials, as well as the emerging areas of bio-artificing and drug delivery. Volume 3 focuses on porous materials in industrial separation applications, including adsorption separation, membrane separation, and osmotic distillation. Finally, and highly relevant to tomorrow's energy challenges, Volume 4 explains the energy engineering aspects of applying porous materials in supercapacitors, fuel cells, batteries, electrolysers and sub-surface energy applications.The text contains many high-quality colourful illustrations and examples, as well as thousands of up-to-date references to peer-reviewed articles, reports and websites for further reading. This comprehensive and well-written handbook is a must-have reference for universities, research groups and companies working with porous materials.Related Link(s)

Book Fabrication of Nanoporous Gold and Biological Applications

Download or read book Fabrication of Nanoporous Gold and Biological Applications written by Badharinadh Uppalapati and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Fabrication of nanoporous gold electrodes by dealloying Au:Ag alloys has attracted much attention in sensing applications. In the first part of this work, the electrochemical response of the redox active molecule, potassium ferricyanide, in a solution of bovine serum albumin in buffer, serum or blood was studied using nanoporous gold and comparisons made to planar gold. Nanoporous gold electrodes with different surface areas and porosity were prepared by dealloying Au:Ag alloy in nitric acid for different dealloying times, specifically, 7.5, 10, 12.5, 20 minutes. Characterization was done using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and cyclic voltammetry (CV). Using cyclic voltammetry, planar gold electrodes exposed to bovine serum albumin in buffer showed a decrease in Faradaic peak current and an increase in peak splitting for potassium ferricyanide. The time required for the peak Faradaic current to drop to one-half of its original value was 3 minutes. At nanoporous gold electrodes, however, no significant reduction in Faradaic peak current or increase in peak splitting was observed. Nanoporous gold electrodes having the smallest pore size and largest surface area showed ideal results to biofouling. These electrodes are believed to impede the mass transport of large biomolecules while allowing small redox molecules to exchange electrons effectively with the electrode. In the second part of this work, the open circuit potential (OCP) of biologic solutions (e.g., blood) was measured using nanoporous gold electrodes. Historically, the measurement of blood redox potential has been hindered due to significant fouling and surface passivation of the metal electrodes. As nanoporous gold electrodes retained electrochemical activity of redox probes like potassium ferricyanide in human serum and rabbit blood, they were used to measure the OCP of blood and plasma from various animals like pig, rabbit, rat, monkey and humans. Comparisons were made to planar gold electrodes. The OCP values at both the planar gold and nanoporous gold electrodes were different from each other and there was variability due to different constituents present in blood and plasma. The OCP of rabbit blood and crashed rabbit blood was measured and the values were found to be different from each other indicating that ORP helps in measuring the animal condition. Ascorbic acid was added to rabbit and sheep blood and OCP measured at the nanoporous electrodes. Addition of reducing agent to blood at different intervals and different concentrations showed a change in potential with concentration.

Book Nanoporous Gold

Download or read book Nanoporous Gold written by Arne Wittstock and published by Royal Society of Chemistry. This book was released on 2012-03-28 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-surface-area materials have recently attracted significant interest due to potential applications in various fields such as electrochemistry and catalysis, gas-phase catalysis, optics, sensors and actuators, energy harvesting and storage. In contrast to classical materials the properties of high-surface-area materials are no longer determined by their bulk, but by their nanoscale architecture. Nanoporous gold (np-Au) represents the fascinating class of mesoporous metals that have been intensively investigated in recent years. The current interest and the increasing number of scientific publications show that np-Au by itself is an outstanding nano-material that justifies a book devoted to all aspects of its properties and applications. The resulting publication is a discussion of this unique nano-material and is an accessible and comprehensive introduction to the field. The book provides a broad, multi-disciplinary platform to learn more about the properties of nanoporous gold from an inter-disciplinary perspective. It starts with an introduction and overview of state-of-the-art applications and techniques characterizing this material and its applications. It then covers the progress in research within the last years. The chapters are in-depth overviews written by the world's leading scientists in the particular field. Each chapter covers one technique or application so that the reader can easily target their favoured topic and will get the latest and state-of-the-art information in the field.

Book Modification of Patterned Nanoporous Gold Thin Film Electrodes Via Electro annealing and Electrochemical Etching

Download or read book Modification of Patterned Nanoporous Gold Thin Film Electrodes Via Electro annealing and Electrochemical Etching written by Tatiana Dorofeeva and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured materials have had a major impact on various fields, including medicine, catalysis, and energy storage, for the major part due to unique phenomena that arise at nanoscale. For this reason, there is a sustained need for new nanostructured materials, techniques to pattern them, and methods to precisely control their nanostructure. To that end, the primary focus of this dissertation is to demonstrate novel techniques to fabricate and tailor the morphology of a class of nanoporous metals, obtained by a process known as dealloying. In this process, while the less noble constituent of an alloy is chemically dissolved, surface-diffusion of the more noble constituent leads to self-assembly of a bicontinuous ligament network with characteristic porosity of ~70% and ligament diameter of 10s of nanometers. As a model material produced by dealloying, this work employ nanoporous gold (np-Au), which has attracted significant attention of desirable features, such as high effective surface area, electrical conductivity, well-defined thiol-based surface modification strategies, microfabrication-compatibility, and biocompatibility. The most commonly method used to modify the morphology of np-Au is thermal treatment, where the enhanced diffusivity of the surface atoms leads to ligament (and consequently pore) coarsening. This method, however, is not conducive to modifying the morphology of thin films at specific locations on the film, which is necessary for creating devices that may need to contain different morphologies on a single device. In addition, coarsening attained by thermal treatment also leads to an undesirable reduction in effective surface area. In response to these challenges, this work demonstrates two different techniques that enables in situ modification of np-Au thin film electrodes obtained by sputter-deposition of a precursors silver-rich gold-silver alloy. The first method, referred to as electro-annealing, is achieved by injecting electrical current to np-Au electrodes, which leads coarsening due to a combination of Joule heating and other mechanisms. This method offers the capability to anneal different electrodes to varying degrees of coarsening in one step, by employing electrodes patterns with different cross-sectional areas – easily attained since np-Au can be patterned into arbitrary shapes via photolithography – to control electrode resistivity, thus current density and the amount of electro-annealing of an electrode. A surprising finding was that electro-annealing lead to electrode coarsening at much lower temperatures than conventional thermal treatment, which was attributed to augmented electron-surface atom interactions at high current densities that may in turn enhance surface atom diffusivity. A major advantage of electro-annealing is the ability to monitor the resistance change of the electrode (surrogate for electrode morphology) in real-time and vary the electro-annealing current accordingly to establish a closed-loop electro-annealing configuration. In nanostructured materials, the electrical resistance is often a function of nanostructure, thus changes in resistance can be directly linked to morphological changes of the electrode. Examination of the underlying mechanisms of nanostructure-dependent resistance change revealed that both ligament diameter and grain size play a role in dictating the observed electrode resistance change. The second method relies on electrochemical etching of ligaments to modify electrode morphology in order to maintain both a high effective surface area and large pores for unhindered transport of molecules to/from the ligament surfaces – an important consideration for many physico-chemical processes, such fuel cells, electrochemical sensors, and drug delivery platforms. The advantage of this method over purely chemical approach is that while an entire sample in exposed to the chemical reagent, the etching process does not occur until the necessary electrochemical potential is applied. Similar to the electro-annealing methods, electrical addressability allows for differentially modifying the morphology individual electrodes on a single substrate. The results of this study also revealed that electrochemical etching is a combination of coarsening and etching processes, where the optimization of etching parameters makes it possible precisely control the etching by favoring one process over the other. In summary, the two techniques, taken together in combination with np-Au’s compatibility with microfabrication processes, can be extended to create multiple electrode arrays that display different morphologies for studying structure−property relationships and tuning catalysts/sensors for optimal performance.

Book Nanoporous Gold

    Book Details:
  • Author : Arne Wittstock
  • Publisher : Royal Society of Chemistry
  • Release : 2012
  • ISBN : 1849733740
  • Pages : 265 pages

Download or read book Nanoporous Gold written by Arne Wittstock and published by Royal Society of Chemistry. This book was released on 2012 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a broad, multidisciplinary platform to learn more about the properties of nanoporous gold from an interdisciplinary perspective from an overview of state-of-the-art applications and techniques to the latest research progress.

Book Nanoporous Gold Characterization  Structural Modification and Use as a Solid Support for Biomolecule Immobilization

Download or read book Nanoporous Gold Characterization Structural Modification and Use as a Solid Support for Biomolecule Immobilization written by Abeera Sharma and published by . This book was released on 2014 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoporous gold (NPG) has immense technological applications owing to a plethora of properties like large surface area to volume ratio, plasmonic properties, stable gold-thiolate bond formation and a wide range of pore sizes. The surface morphology of nanoporous gold has been altered previously by dealloying and thermal annealing to increase/decrease the pore size and change the surface area. We provide a novel electrochemical annealing technique for post dealloying modification wherein electrochemical sweep cycles in different electrolytes at positive potentials leads to a subsequent increase in pore sizes of nanoporous gold as studied using scanning electron microscopy. Tailoring the surface of nanoporous gold allows us to characterize and study self-assembled monolayers of alkanethiols, including those terminated by carbohydrate moieties. The orientation of these thiols on nanoporous gold is not uniform due to the interconnected framework of pores and ligaments and we try to offer a fair comparison between flat gold and nanoporous gold to determine the surface coverage of these self-assembled monolayers. Carbohydrate-lectin interactions have been studied with the help of dendrimers as linkers. Dendrimers (polyamidoamine generation 4 and 5) have been used as linkers due to their multivalent interactions with carbohydrate moieties and impedance spectroscopy as well as atomic force microscopy techniques have been utilized to study dendrimers attached on nanoporous gold surface using covalent immobilization. This study aims at providing a comprehensive surface property analysis of nanoporous gold.

Book Structure and Applications of Gold in Nanoporous Form

Download or read book Structure and Applications of Gold in Nanoporous Form written by Jay K. Bhattarai and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoporous gold (np-Au) has many interesting and useful properties that make it a material of interest for use in many technological applications. Its biocompatible nature and ability to serve as a support for self-assembled monolayers of alkanethiols and their derivative make it a suitable support for the immobilization of carbohydrates, enzymes, proteins, and DNA. Its chemically inert, physically robust and conductive high-surface area makes it useful for the design of electrochemistry-based chemical/bio-sensors and reactors. Furthermore, it is also used as solid support for organic molecular synthesis and biomolecules separation. Its enhanced optical property has application in design of plasmonics-based sensitive biosensors. In fact, np-Au is one of the few materials that can be used as a transducer for both optical and electrochemical biosensing. Due to the presence of low-coordination surface sites, np-Au shows remarkable catalytic activity for oxidation of molecules like carbon monoxide and methanol. Owing to the importance of np-Au, in this chapter we will highlight different strategies of fabrication of np-Au and its emerging applications based on its unique properties.

Book Electrochemical Nanotechnologies

Download or read book Electrochemical Nanotechnologies written by Tetsuya Osaka and published by Springer Science & Business Media. This book was released on 2009-12-15 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, the term "electrochemical nanotechnology" is defined as nanoprocessing by means of electrochemical techniques. This introductory book reviews the application of electrochemical nanotechnologies with the aim of understanding their wider applicability in evolving nanoindustries. These advances have impacted microelectronics, sensors, materials science, and corrosion science, generating new fields of research that promote interaction between biology, medicine, and microelectronics. This volume reviews nanotechnology applications in selected high technology areas with particular emphasis on advances in such areas. Chapters are classified under four different headings: Nanotechnology for energy devices - Nanotechnology for magnetic storage devices - Nanotechnology for bio-chip applications - Nanotechnology for MEMS/Packaging.

Book Nanocatalysis

Download or read book Nanocatalysis written by Vivek Polshettiwar and published by John Wiley & Sons. This book was released on 2013-09-30 with total page 755 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exhibiting both homogeneous and heterogeneous catalytic properties, nanocatalysts allow for rapid and selective chemical transformations, with the benefits of excellent product yield and ease of catalyst separation and recovery. This book reviews the catalytic performance and the synthesis and characterization of nanocatalysts, examining the current state of the art and pointing the way towards new avenues of research. Moreover, the authors discuss new and emerging applications of nanocatalysts and nanocatalysis, from pharmaceuticals to fine chemicals to renewable energy to biotransformations. Nanocatalysis features contributions from leading research groups around the world. These contributions reflect a thorough review of the current literature as well as the authors’ first-hand experience designing and synthesizing nanocatalysts and developing new applications for them. The book’s nineteen chapters offer a broad perspective, covering: Nanocatalysis for carbon-carbon and carbon-heteroatom coupling reactions Nanocatalysis for various organic transformations in fine chemical synthesis Nanocatalysis for oxidation, hydrogenation, and other related reactions Nanomaterial-based photocatalysis and biocatalysis Nanocatalysts to produce non-conventional energy such as hydrogen and biofuels Nanocatalysts and nano-biocatalysts in the chemical industry Readers will also learn about the latest spectroscopic and microscopy tools used in advanced characterization methods that shed new light on nanocatalysts and nanocatalysis. Moreover, the authors offer expert advice to help readers develop strategies to improve catalytic performance. Summarizing and reviewing all the most important advances in nanocatalysis over the last two decades, this book explains the many advantages of nanocatalysts over conventional homogeneous and heterogeneous catalysts, providing the information and guidance needed for designing green, sustainable catalytic processes.