EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Exponential Covariance Matrix Model

Download or read book Exponential Covariance Matrix Model written by Yiu-Ming Chiu and published by . This book was released on 1994 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Gaussian Processes for Machine Learning

Download or read book Gaussian Processes for Machine Learning written by Carl Edward Rasmussen and published by MIT Press. This book was released on 2005-11-23 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

Book Applied Longitudinal Analysis

Download or read book Applied Longitudinal Analysis written by Garrett M. Fitzmaurice and published by John Wiley & Sons. This book was released on 2012-10-23 with total page 758 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition ". . . [this book] should be on the shelf of everyone interested in . . . longitudinal data analysis." —Journal of the American Statistical Association Features newly developed topics and applications of the analysis of longitudinal data Applied Longitudinal Analysis, Second Edition presents modern methods for analyzing data from longitudinal studies and now features the latest state-of-the-art techniques. The book emphasizes practical, rather than theoretical, aspects of methods for the analysis of diverse types of longitudinal data that can be applied across various fields of study, from the health and medical sciences to the social and behavioral sciences. The authors incorporate their extensive academic and research experience along with various updates that have been made in response to reader feedback. The Second Edition features six newly added chapters that explore topics currently evolving in the field, including: Fixed effects and mixed effects models Marginal models and generalized estimating equations Approximate methods for generalized linear mixed effects models Multiple imputation and inverse probability weighted methods Smoothing methods for longitudinal data Sample size and power Each chapter presents methods in the setting of applications to data sets drawn from the health sciences. New problem sets have been added to many chapters, and a related website features sample programs and computer output using SAS, Stata, and R, as well as data sets and supplemental slides to facilitate a complete understanding of the material. With its strong emphasis on multidisciplinary applications and the interpretation of results, Applied Longitudinal Analysis, Second Edition is an excellent book for courses on statistics in the health and medical sciences at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for researchers and professionals in the medical, public health, and pharmaceutical fields as well as those in social and behavioral sciences who would like to learn more about analyzing longitudinal data.

Book Foundations of Time Series Analysis and Prediction Theory

Download or read book Foundations of Time Series Analysis and Prediction Theory written by Mohsen Pourahmadi and published by John Wiley & Sons. This book was released on 2001-06-01 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundations of time series for researchers and students This volume provides a mathematical foundation for time seriesanalysis and prediction theory using the idea of regression and thegeometry of Hilbert spaces. It presents an overview of the tools oftime series data analysis, a detailed structural analysis ofstationary processes through various reparameterizations employingtechniques from prediction theory, digital signal processing, andlinear algebra. The author emphasizes the foundation and structureof time series and backs up this coverage with theory andapplication. End-of-chapter exercises provide reinforcement for self-study andappendices covering multivariate distributions and Bayesianforecasting add useful reference material. Further coveragefeatures: * Similarities between time series analysis and longitudinal dataanalysis * Parsimonious modeling of covariance matrices through ARMA-likemodels * Fundamental roles of the Wold decomposition andorthogonalization * Applications in digital signal processing and Kalmanfiltering * Review of functional and harmonic analysis and predictiontheory Foundations of Time Series Analysis and Prediction Theory guidesreaders from the very applied principles of time series analysisthrough the most theoretical underpinnings of prediction theory. Itprovides a firm foundation for a widely applicable subject forstudents, researchers, and professionals in diverse scientificfields.

Book Introduction to Digital Communications

Download or read book Introduction to Digital Communications written by Joachim Speidel and published by Springer Nature. This book was released on 2021-04-02 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers students, scientists, and engineers an extensive introduction to the theoretical fundamentals of digital communications, covering single-input single-output (SISO), multiple-input multiple-output (MIMO), and time-variant systems. Further, the main content is supplemented by a wealth of representative examples and computer simulations. The book is divided into three parts, the first of which addresses the principles of wire-line and wireless digital transmission over SISO links. Digital modulation, intersymbol interference, and various detection methods are discussed; models for realistic time-variant, wireless channels are introduced; and the equivalent time-variant baseband system model is derived. This book covers two new topics such as blockwise signal transmission and multicarrier modulation with orthogonal frequency-division multiplexing (OFDM) systems. Since not all readers may be familiar with this topic, Part II is devoted to the theory of linear time-variant systems. The generalized convolution is derived, and readers are introduced to impulse response, the delay spread function, and system functions in the frequency domain. In addition, randomly changing systems are discussed. Several new examples and graphs have been added to this book. In turn, Part III deals with MIMO systems. It describes MIMO channel models with and without spatial correlation, including the Kronecker model. Both linear and nonlinear MIMO receivers are investigated. The question of how many bits per channel use can be transmitted is answered, and maximizing channel capacity is addressed. Principles of space–time coding are outlined in order to improve transmission quality and increase data rates. In closing, the book describes multi-user MIMO schemes, which reduce interference when multiple users in the same area transmit their signals in the same time slots and frequency bands.

Book High Dimensional Covariance Estimation

Download or read book High Dimensional Covariance Estimation written by Mohsen Pourahmadi and published by John Wiley & Sons. This book was released on 2013-06-24 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods for estimating sparse and large covariance matrices Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and machine learning. Recently, the classical sample covariance methodologies have been modified and improved upon to meet the needs of statisticians and researchers dealing with large correlated datasets. High-Dimensional Covariance Estimation focuses on the methodologies based on shrinkage, thresholding, and penalized likelihood with applications to Gaussian graphical models, prediction, and mean-variance portfolio management. The book relies heavily on regression-based ideas and interpretations to connect and unify many existing methods and algorithms for the task. High-Dimensional Covariance Estimation features chapters on: Data, Sparsity, and Regularization Regularizing the Eigenstructure Banding, Tapering, and Thresholding Covariance Matrices Sparse Gaussian Graphical Models Multivariate Regression The book is an ideal resource for researchers in statistics, mathematics, business and economics, computer sciences, and engineering, as well as a useful text or supplement for graduate-level courses in multivariate analysis, covariance estimation, statistical learning, and high-dimensional data analysis.

Book The Oxford Handbook of Applied Bayesian Analysis

Download or read book The Oxford Handbook of Applied Bayesian Analysis written by Anthony O' Hagan and published by OUP Oxford. This book was released on 2010-03-18 with total page 924 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian analysis has developed rapidly in applications in the last two decades and research in Bayesian methods remains dynamic and fast-growing. Dramatic advances in modelling concepts and computational technologies now enable routine application of Bayesian analysis using increasingly realistic stochastic models, and this drives the adoption of Bayesian approaches in many areas of science, technology, commerce, and industry. This Handbook explores contemporary Bayesian analysis across a variety of application areas. Chapters written by leading exponents of applied Bayesian analysis showcase the scientific ease and natural application of Bayesian modelling, and present solutions to real, engaging, societally important and demanding problems. The chapters are grouped into five general areas: Biomedical & Health Sciences; Industry, Economics & Finance; Environment & Ecology; Policy, Political & Social Sciences; and Natural & Engineering Sciences, and Appendix material in each touches on key concepts, models, and techniques of the chapter that are also of broader pedagogic and applied interest.

Book Methods and Applications of Longitudinal Data Analysis

Download or read book Methods and Applications of Longitudinal Data Analysis written by Xian Liu and published by Elsevier. This book was released on 2015-09-01 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods and Applications of Longitudinal Data Analysis describes methods for the analysis of longitudinal data in the medical, biological and behavioral sciences. It introduces basic concepts and functions including a variety of regression models, and their practical applications across many areas of research. Statistical procedures featured within the text include: - descriptive methods for delineating trends over time - linear mixed regression models with both fixed and random effects - covariance pattern models on correlated errors - generalized estimating equations - nonlinear regression models for categorical repeated measurements - techniques for analyzing longitudinal data with non-ignorable missing observations Emphasis is given to applications of these methods, using substantial empirical illustrations, designed to help users of statistics better analyze and understand longitudinal data. Methods and Applications of Longitudinal Data Analysis equips both graduate students and professionals to confidently apply longitudinal data analysis to their particular discipline. It also provides a valuable reference source for applied statisticians, demographers and other quantitative methodologists. - From novice to professional: this book starts with the introduction of basic models and ends with the description of some of the most advanced models in longitudinal data analysis - Enables students to select the correct statistical methods to apply to their longitudinal data and avoid the pitfalls associated with incorrect selection - Identifies the limitations of classical repeated measures models and describes newly developed techniques, along with real-world examples.

Book Simulation Driven Modeling and Optimization

Download or read book Simulation Driven Modeling and Optimization written by Slawomir Koziel and published by Springer. This book was released on 2016-02-12 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume is devoted to the now-ubiquitous use of computational models across most disciplines of engineering and science, led by a trio of world-renowned researchers in the field. Focused on recent advances of modeling and optimization techniques aimed at handling computationally-expensive engineering problems involving simulation models, this book will be an invaluable resource for specialists (engineers, researchers, graduate students) working in areas as diverse as electrical engineering, mechanical and structural engineering, civil engineering, industrial engineering, hydrodynamics, aerospace engineering, microwave and antenna engineering, ocean science and climate modeling, and the automotive industry, where design processes are heavily based on CPU-heavy computer simulations. Various techniques, such as knowledge-based optimization, adjoint sensitivity techniques, and fast replacement models (to name just a few) are explored in-depth along with an array of the latest techniques to optimize the efficiency of the simulation-driven design process. High-fidelity simulation models allow for accurate evaluations of the devices and systems, which is critical in the design process, especially to avoid costly prototyping stages. Despite this and other advantages, the use of simulation tools in the design process is quite challenging due to associated high computational cost. The steady increase of available computational resources does not always translate into the shortening of the design cycle because of the growing demand for higher accuracy and necessity to simulate larger and more complex systems. For this reason, automated simulation-driven design—while highly desirable—is difficult when using conventional numerical optimization routines which normally require a large number of system simulations, each one already expensive.

Book An Author and Permuted Title Index to Selected Statistical Journals

Download or read book An Author and Permuted Title Index to Selected Statistical Journals written by Brian L. Joiner and published by . This book was released on 1970 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: All articles, notes, queries, corrigenda, and obituaries appearing in the following journals during the indicated years are indexed: Annals of mathematical statistics, 1961-1969; Biometrics, 1965-1969#3; Biometrics, 1951-1969; Journal of the American Statistical Association, 1956-1969; Journal of the Royal Statistical Society, Series B, 1954-1969,#2; South African statistical journal, 1967-1969,#2; Technometrics, 1959-1969.--p.iv.

Book Applied Stochastic Differential Equations

Download or read book Applied Stochastic Differential Equations written by Simo Särkkä and published by Cambridge University Press. This book was released on 2019-05-02 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Book Random Fields for Spatial Data Modeling

Download or read book Random Fields for Spatial Data Modeling written by Dionissios T. Hristopulos and published by Springer Nature. This book was released on 2020-02-17 with total page 884 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an inter-disciplinary introduction to the theory of random fields and its applications. Spatial models and spatial data analysis are integral parts of many scientific and engineering disciplines. Random fields provide a general theoretical framework for the development of spatial models and their applications in data analysis. The contents of the book include topics from classical statistics and random field theory (regression models, Gaussian random fields, stationarity, correlation functions) spatial statistics (variogram estimation, model inference, kriging-based prediction) and statistical physics (fractals, Ising model, simulated annealing, maximum entropy, functional integral representations, perturbation and variational methods). The book also explores links between random fields, Gaussian processes and neural networks used in machine learning. Connections with applied mathematics are highlighted by means of models based on stochastic partial differential equations. An interlude on autoregressive time series provides useful lower-dimensional analogies and a connection with the classical linear harmonic oscillator. Other chapters focus on non-Gaussian random fields and stochastic simulation methods. The book also presents results based on the author’s research on Spartan random fields that were inspired by statistical field theories originating in physics. The equivalence of the one-dimensional Spartan random field model with the classical, linear, damped harmonic oscillator driven by white noise is highlighted. Ideas with potentially significant computational gains for the processing of big spatial data are presented and discussed. The final chapter concludes with a description of the Karhunen-Loève expansion of the Spartan model. The book will appeal to engineers, physicists, and geoscientists whose research involves spatial models or spatial data analysis. Anyone with background in probability and statistics can read at least parts of the book. Some chapters will be easier to understand by readers familiar with differential equations and Fourier transforms.

Book Statistical Methods for Spatial Data Analysis

Download or read book Statistical Methods for Spatial Data Analysis written by Oliver Schabenberger and published by CRC Press. This book was released on 2017-01-27 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding spatial statistics requires tools from applied and mathematical statistics, linear model theory, regression, time series, and stochastic processes. It also requires a mindset that focuses on the unique characteristics of spatial data and the development of specialized analytical tools designed explicitly for spatial data analysis. Statistical Methods for Spatial Data Analysis answers the demand for a text that incorporates all of these factors by presenting a balanced exposition that explores both the theoretical foundations of the field of spatial statistics as well as practical methods for the analysis of spatial data. This book is a comprehensive and illustrative treatment of basic statistical theory and methods for spatial data analysis, employing a model-based and frequentist approach that emphasizes the spatial domain. It introduces essential tools and approaches including: measures of autocorrelation and their role in data analysis; the background and theoretical framework supporting random fields; the analysis of mapped spatial point patterns; estimation and modeling of the covariance function and semivariogram; a comprehensive treatment of spatial analysis in the spectral domain; and spatial prediction and kriging. The volume also delivers a thorough analysis of spatial regression, providing a detailed development of linear models with uncorrelated errors, linear models with spatially-correlated errors and generalized linear mixed models for spatial data. It succinctly discusses Bayesian hierarchical models and concludes with reviews on simulating random fields, non-stationary covariance, and spatio-temporal processes. Additional material on the CRC Press website supplements the content of this book. The site provides data sets used as examples in the text, software code that can be used to implement many of the principal methods described and illustrated, and updates to the text itself.

Book Photogrammetric Computer Vision

Download or read book Photogrammetric Computer Vision written by Wolfgang Förstner and published by Springer. This book was released on 2016-10-04 with total page 819 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook offers a statistical view on the geometry of multiple view analysis, required for camera calibration and orientation and for geometric scene reconstruction based on geometric image features. The authors have backgrounds in geodesy and also long experience with development and research in computer vision, and this is the first book to present a joint approach from the converging fields of photogrammetry and computer vision. Part I of the book provides an introduction to estimation theory, covering aspects such as Bayesian estimation, variance components, and sequential estimation, with a focus on the statistically sound diagnostics of estimation results essential in vision metrology. Part II provides tools for 2D and 3D geometric reasoning using projective geometry. This includes oriented projective geometry and tools for statistically optimal estimation and test of geometric entities and transformations and their relations, tools that are useful also in the context of uncertain reasoning in point clouds. Part III is devoted to modelling the geometry of single and multiple cameras, addressing calibration and orientation, including statistical evaluation and reconstruction of corresponding scene features and surfaces based on geometric image features. The authors provide algorithms for various geometric computation problems in vision metrology, together with mathematical justifications and statistical analysis, thus enabling thorough evaluations. The chapters are self-contained with numerous figures and exercises, and they are supported by an appendix that explains the basic mathematical notation and a detailed index. The book can serve as the basis for undergraduate and graduate courses in photogrammetry, computer vision, and computer graphics. It is also appropriate for researchers, engineers, and software developers in the photogrammetry and GIS industries, particularly those engaged with statistically based geometric computer vision methods.

Book Multivariable Analysis

    Book Details:
  • Author : Mitchell H. Katz
  • Publisher : Cambridge University Press
  • Release : 2011-03-10
  • ISBN : 1139500317
  • Pages : 251 pages

Download or read book Multivariable Analysis written by Mitchell H. Katz and published by Cambridge University Press. This book was released on 2011-03-10 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this highly successful text has been fully revised and updated with expanded sections on cutting-edge techniques including Poisson regression, negative binomial regression, multinomial logistic regression and proportional odds regression. As before, it focuses on easy-to-follow explanations of complicated multivariable techniques. It is the perfect introduction for all clinical researchers. It describes how to perform and interpret multivariable analysis, using plain language rather than complex derivations and mathematical formulae. It focuses on the nuts and bolts of performing research, and prepares the reader to set up, perform and interpret multivariable models. Numerous tables, graphs and tips help to demystify the process of performing multivariable analysis. The text is illustrated with many up-to-date examples from the medical literature on how to use multivariable analysis in clinical practice and in research.

Book Intelligent Data Engineering and Automated Learning     IDEAL 2016

Download or read book Intelligent Data Engineering and Automated Learning IDEAL 2016 written by Hujun Yin and published by Springer. This book was released on 2016-09-12 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 17 International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2016, held in Yangzhou, China, in October 2016. The 68 full papers presented were carefully reviewed and selected from 115 submissions. They provide a valuable and timely sample of latest research outcomes in data engineering and automated learning ranging from methodologies, frameworks, and techniques to applications including various topics such as evolutionary algorithms; deep learning; neural networks; probabilistic modeling; particle swarm intelligence; big data analysis; applications in regression, classification, clustering, medical and biological modeling and predication; text processing and image analysis.

Book Analysis of Longitudinal Data with Example

Download or read book Analysis of Longitudinal Data with Example written by You-Gan Wang and published by CRC Press. This book was released on 2022-01-28 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Development in methodology on longitudinal data is fast. Currently, there are a lack of intermediate /advanced level textbooks which introduce students and practicing statisticians to the updated methods on correlated data inference. This book will present a discussion of the modern approaches to inference, including the links between the theories of estimators and various types of efficient statistical models including likelihood-based approaches. The theory will be supported with practical examples of R-codes and R-packages applied to interesting case-studies from a number of different areas. Key Features: •Includes the most up-to-date methods •Use simple examples to demonstrate complex methods •Uses real data from a number of areas •Examples utilize R code