EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Exploration of Quantum Transport Phenomena Via Engineering Emergent Magnetic Fields in Topological Magnets

Download or read book Exploration of Quantum Transport Phenomena Via Engineering Emergent Magnetic Fields in Topological Magnets written by Yukako Fujishiro and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses novel electronic and thermoelectronic properties arising from topological spin textures as well as topologically non-trivial electronic structures. In particular, it focuses on a unique topological spin texture, i.e., spin hedgehog lattice, emerging in a chiral magnet and explore its novel properties which are distinct from the conventional skyrmion lattice, and discusses the possibility of realizing high-temperature quantum anomalous Hall effect through quantum confinement effect in topological semimetal. This book benefits students and researchers working in the field of condensed matter physics, through providing comprehensive understanding of the current status and the outlook in the field of topological magnets.

Book Exploration of Quantum Transport Phenomena via Engineering Emergent Magnetic Fields in Topological Magnets

Download or read book Exploration of Quantum Transport Phenomena via Engineering Emergent Magnetic Fields in Topological Magnets written by Yukako Fujishiro and published by Springer Nature. This book was released on 2022-01-01 with total page 101 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses novel electronic and thermoelectronic properties arising from topological spin textures as well as topologically non-trivial electronic structures. In particular, it focuses on a unique topological spin texture, i.e., spin hedgehog lattice, emerging in a chiral magnet and explore its novel properties which are distinct from the conventional skyrmion lattice, and discusses the possibility of realizing high-temperature quantum anomalous Hall effect through quantum confinement effect in topological semimetal. This book benefits students and researchers working in the field of condensed matter physics, through providing comprehensive understanding of the current status and the outlook in the field of topological magnets.

Book Exploration of Quantum Transport Phenomena via Engineering Emergent Magnetic Fields in Topological Magnets

Download or read book Exploration of Quantum Transport Phenomena via Engineering Emergent Magnetic Fields in Topological Magnets written by Yukako Fujishiro and published by Springer. This book was released on 2022-12-03 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses novel electronic and thermoelectronic properties arising from topological spin textures as well as topologically non-trivial electronic structures. In particular, it focuses on a unique topological spin texture, i.e., spin hedgehog lattice, emerging in a chiral magnet and explore its novel properties which are distinct from the conventional skyrmion lattice, and discusses the possibility of realizing high-temperature quantum anomalous Hall effect through quantum confinement effect in topological semimetal. This book benefits students and researchers working in the field of condensed matter physics, through providing comprehensive understanding of the current status and the outlook in the field of topological magnets.

Book Aspects of Magnetism

    Book Details:
  • Author : Ji Zou
  • Publisher :
  • Release : 2022
  • ISBN :
  • Pages : 218 pages

Download or read book Aspects of Magnetism written by Ji Zou and published by . This book was released on 2022 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: The general theme in this thesis is the exploration of topology, transport, and quantum entanglement in magnetic systems. We first set up the stage in chapter 1 by introducing some notions that we use in later chapters. In chapters 2 and 3, we discuss the (hydro)dynamics of vortices and hedgehogs in two- and three-dimensional insulating magnets, respectively, in both classical and quantum regimes based on the topological conservation laws of vortices and hedgehogs, which follow from their topological nature instead of symmetries of the system Hamiltonian (thus are robust against impurities and anisotropies). To illustrate the applications in spintronics, we formulate an experimentally feasible energy-storage concept based on vorticity (hydro)dynamics within an easy-plane insulating magnet in chapter 2. In chapter 4, we investigate entanglement between two arbitrary spins in a magnetic system in the presence of applied magnetic fields and axial anisotropies. We demonstrate that spins are generally entangled in thermodynamic equilibrium, indicating that the magnetic medium can serve as a resource to store and process quantum information in general. We, furthermore, show that the entanglement can jump discontinuously when varying the magnetic field. This tunable entanglement can be potentially used as an efficient switch in quantum-information processing tasks. Finally, in chapter 5, we present a study on the steady entanglement generation for two distant spin qubits interacting with a common magnetic medium. Our focus is a medium-induced effective coupling (between the two qubits) of dissipative nature. We explore the different dynamical regimes of the entanglement evolution in the presence of this dissipative coupling and demonstrate the advantage of its utilization as a route to generate steady entanglement and even Bell state, insensitive to the initial state. Our work points to a new direction of the application of spintronic schemes in future quantum information technology.

Book Quantum Transport in Two dimensional Topological Systems

Download or read book Quantum Transport in Two dimensional Topological Systems written by Jianxiao Zhang and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The discovery of topological states of matters has sparked intense interests amongresearchers in the past decade. Topologically non-trivial band structure in thesequantum states can give rise to a variety of topological phenomena, the experimentaldemonstration of which can have a huge impact on our understandingof fundamental states of matter. Transport measurement is one of the majorexperimental techniques to probe these topological phenomena. This dissertationis devoted to theoretical and numerical studies of quantum transport phenomenain a variety of topological materials, including magnetic topological insulator films,the quantum anomalous Hall insulator/superconductor hetero-structures, the kinkstates in bilayer graphene and the photonic crystal of topological mirror insulatorphase in the optical regime. The numerical simulations of transport phenomenaand the analytical understanding of the underlying physical mechanism in thisdissertation will provide guidance for the future transport measurements.The numerical methods to simulate quantum transport in this dissertation arebased on Landauer-Bttiker formalism and Greens function method, which willbe introduced in Chapter 2. The transmission through certain sample regionscan be extracted from the Greens function method and serves as the input forthe Landauer-Bttiker formalism to compute conductance tensor that is directlymeasured in transport experiments. Physical understanding of the transportmechanism can be provided by analyzing different components of the transmissionmatrix, in combination with other analytical methods for transport phenomena.Defects and impurities can be incorporated in numerical simulations by includingrandom potentials into the model Hamiltonian, and thus this method can be appliedin different transport regimes, from ballistic to diffusive transport.Chapter 3 to 5 of the dissertation is to apply the above numerical methodsto three different topological mesoscopic systems: magnetic topological insulator(MTI) films, quantum anomalous Hall insulator (QAHI) - superconductor (SC)junctions, and bilayer graphene devices.Chapter 3 is dedicated to the study of quantum transport through magnetictextures in a thin film of MTI. We focus on both the longitudinal and Hall transports,which reveal complicated features due to the coexistence of strong spin-orbit couplingfrom TI materials and magnetic non-colinearity from magnetic textures in thissystem. The manifested Hall transport can be induced by different topologicalmechanisms, including the intrinsic anomalous Hall effect from strong SOC and thetopological Hall effect (or known as geometric Hall effect) from magnetic textures.Thus, this system provides a nice platform to understand the interplay betweenspin-orbit coupling and real-space magnetic texture, as well as disorder scatterings.Our numerical simulations have shown different roles of spin-orbit coupling in theclean and disordered limits for this system. In the clean limit when SOC strengthis increased, the topological Hall conductance (THC) almost remains constant butthe topological Hall resistance (THR) can increase by an order of magnitude dueto the reduction of longitudinal conductance, caused by SOC-induced spin flips.However, in the disordered limit, both the THC and THR increase with increasingSOC, while longitudinal conductance is not influenced much by SOC.In Chapter 4, we study the transport of chiral edge channels in a QAHI/superconductorjunction. This type of hetero-junction has been recently fabricated andmeasured in experiments, in pursue of topological superconductivity and Majoranafermions. We focus on the disorder effect in the weak superconductor proximitylimit. Our results show that the quantized valued of conductance remains robustfor a single chiral edge channel even in the presence of disorder in the zero-biaslimit. However, such quantization is broken down for a finite bias, or for multiplechiral edge modes, or for the coexistence of a single chiral edge mode with othertrivial metallic modes, when disorders are present. Our theory provides guidanceto understand transport phenomena in these systems for future experiments.Chapter 5 is a simulation of transport behaviors through the so-called kinkstates in a bilayer graphene device under external electric and magnetic fields. Thedevice, known as a valley valve and electron beam splitter, has been fabricatedby our experimental collaborators and its unusual transport properties have beenmeasured experimentally. Our numerical simulations provide a justification of theguiding center physical picture for topological transport through this device.Chapter 6 goes beyond electronic systems and concerns topological phase inphotonic systems. We utilize a method of dynamic evolution of states to studya topological crystalline insulator phase in a photonic system. The crystallineprotection, achieved by the fine manufacturing of emulated atoms in a photoniclattice, selectively pumps incident states with a certain parity while reflects theother.The studies in the dissertation are in close collaboration with experimentalgroups, including Prof. Moses Chans and Prof. Cui-zu Changs group for the transportmeasurements in MTI films and QAHI/SC junctions, Prof. Jun Zhus groupfor the experiments on the bilayer graphene device, and Prof. Mikael Rechtsmansgroup for the photonic topological systems.

Book Opportunities in High Magnetic Field Science

Download or read book Opportunities in High Magnetic Field Science written by National Research Council and published by National Academies Press. This book was released on 2005-08-26 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-field magnetsâ€"those that operate at the limits of the mechanical and/or electromagnetic properties of their structural materialsâ€"are used as research tools in a variety of scientific disciplines. The study of high magnetic fields themselves is also important in many areas such as astrophysics. Because of their importance in scientific research and the possibility of new breakthroughs, the National Science Foundation asked the National Research Council to assess the current state of and future prospects for high-field science and technology in the United States. This report presents the results of that assessment. It focuses on scientific and technological challenges and opportunities, and not on specific program activities. The report provides findings and recommendations about important research directions, the relative strength of U.S. efforts compared to other countries, and ways in which the program can operate more effectively.

Book The Quantum Hall Effect

Download or read book The Quantum Hall Effect written by Richard E. Prange and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: After a foreword by Klaus von Klitzing, the first chapters of this book discuss the prehistory and the theoretical basis as well as the implications of the discovery of the Quantum Hall effect on superconductivity, superfluidity, and metrology, including experimentation. The second half of this volume is concerned with the theory of and experiments on the many body problem posed by fractional effect. Specific unsolved problems are mentioned throughout the book and a summary is made in the final chapter. The quantum Hall effect was discovered on about the hundredth anniversary of Hall's original work, and the finding was announced in 1980 by von Klitzing, Dorda and Pepper. Klaus von KIitzing was awarded the 1985 Nobel prize in physics for this discovery.

Book Quantum Magnetism

    Book Details:
  • Author : Ulrich Schollwöck
  • Publisher : Springer
  • Release : 2008-05-14
  • ISBN : 3540400664
  • Pages : 488 pages

Download or read book Quantum Magnetism written by Ulrich Schollwöck and published by Springer. This book was released on 2008-05-14 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Closing a gap in the literature, this volume is intended both as an introductory text at postgraduate level and as a modern, comprehensive reference for researchers in the field. Provides a full working description of the main fundamental tools in the theorists toolbox which have proven themselves on the field of quantum magnetism in recent years. Concludes by focusing on the most important cuurent materials form an experimental viewpoint, thus linking back to the initial theoretical concepts.

Book Manipulating Quantum Systems

    Book Details:
  • Author : National Academies of Sciences, Engineering, and Medicine
  • Publisher : National Academies Press
  • Release : 2020-09-14
  • ISBN : 0309499542
  • Pages : 315 pages

Download or read book Manipulating Quantum Systems written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2020-09-14 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of atomic, molecular, and optical (AMO) science underpins many technologies and continues to progress at an exciting pace for both scientific discoveries and technological innovations. AMO physics studies the fundamental building blocks of functioning matter to help advance the understanding of the universe. It is a foundational discipline within the physical sciences, relating to atoms and their constituents, to molecules, and to light at the quantum level. AMO physics combines fundamental research with practical application, coupling fundamental scientific discovery to rapidly evolving technological advances, innovation and commercialization. Due to the wide-reaching intellectual, societal, and economical impact of AMO, it is important to review recent advances and future opportunities in AMO physics. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Physics in the United States assesses opportunities in AMO science and technology over the coming decade. Key topics in this report include tools made of light; emerging phenomena from few- to many-body systems; the foundations of quantum information science and technologies; quantum dynamics in the time and frequency domains; precision and the nature of the universe, and the broader impact of AMO science.

Book Spin Current

    Book Details:
  • Author : Sadamichi Maekawa
  • Publisher : Oxford University Press
  • Release : 2017
  • ISBN : 0198787073
  • Pages : 541 pages

Download or read book Spin Current written by Sadamichi Maekawa and published by Oxford University Press. This book was released on 2017 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a new branch of physics and technology, called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called "spin current", are manipulated and controlled together. This book is intended to provide an introduction and guide to the new physics and applications of spin current.

Book Graphdiyne

Download or read book Graphdiyne written by Yuliang Li and published by John Wiley & Sons. This book was released on 2022-01-10 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphdiyne Discover the most cutting-edge developments in the study of graphdiyne from a pioneer of the field In Graphdiyne: Fundamentals and Applications in Renewable Energy and Electronics, accomplished chemist Dr. Yuliang Li delivers a practical and insightful compilation of theoretical and experimental developments in the study of graphdiyne. Of interest to both academics and industrial researchers in the fields of nanoscience, organic chemistry, carbon science, and renewable energies, the book systematically summarizes recent research into the exciting new material. Discover information about the properties of graphdiyne through theoretical simulations and experimental characterizations, as well as the development of graphdiyne with appropriate preparation technology. Learn to create new graphdiyne-based materials and better understand its intrinsic properties. Find out about synthetic methodologies, the controlled growth of aggregated state structures, and structural characterization. In addition to demonstrating the interdisciplinary potential and relevance of graphdiyne, the book also offers readers: A thorough introduction to basic structure and band gap engineering, including molecular and electronic structure, mechanical properties, and the layers structure of bulk graphdiyne Explorations of Graphdiyne synthesis and characterization, including films, nanotube arrays and nanowires, nanowalls, and nanosheets, as well as characterization methods Discussions of the functionalization of graphdiyne, including heteroatom doping, metal decoration, and absorption of guest molecules Rigorous treatments of Graphdiyne-based materials in catalytic applications, including photo- and electrocatalysts Perfect for organic chemists, electronics engineers, materials scientists, and physicists, Graphdiyne: Fundamentals and Applications in Renewable Energy and Electronics will also find its place on the bookshelves of surface and solid-state chemists, electrochemists, and catalytic chemists seeking a one-stop reference on this rising-star carbon material.

Book Topological Insulators

Download or read book Topological Insulators written by Frank Ortmann and published by John Wiley & Sons. This book was released on 2015-04-07 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are only few discoveries and new technologies in physical sciences that have the potential to dramatically alter and revolutionize our electronic world. Topological insulators are one of them. The present book for the first time provides a full overview and in-depth knowledge about this hot topic in materials science and condensed matter physics. Techniques such as angle-resolved photoemission spectrometry (ARPES), advanced solid-state Nuclear Magnetic Resonance (NMR) or scanning-tunnel microscopy (STM) together with key principles of topological insulators such as spin-locked electronic states, the Dirac point, quantum Hall effects and Majorana fermions are illuminated in individual chapters and are described in a clear and logical form. Written by an international team of experts, many of them directly involved in the very first discovery of topological insulators, the book provides the readers with the knowledge they need to understand the electronic behavior of these unique materials. Being more than a reference work, this book is essential for newcomers and advanced researchers working in the field of topological insulators.

Book The Role of Topology in Materials

Download or read book The Role of Topology in Materials written by Sanju Gupta and published by Springer. This book was released on 2018-04-21 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the most important advances in the class of topological materials and discusses the topological characterization, modeling and metrology of materials. Further, it addresses currently emerging characterization techniques such as optical and acoustic, vibrational spectroscopy (Brillouin, infrared, Raman), electronic, magnetic, fluorescence correlation imaging, laser lithography, small angle X-ray and neutron scattering and other techniques, including site-selective nanoprobes. The book analyzes the topological aspects to identify and quantify these effects in terms of topology metrics. The topological materials are ubiquitous and range from (i) de novo nanoscale allotropes of carbons in various forms such as nanotubes, nanorings, nanohorns, nanowalls, peapods, graphene, etc. to (ii) metallo-organic frameworks, (iii) helical gold nanotubes, (iv) Möbius conjugated polymers, (v) block co-polymers, (vi) supramolecular assemblies, to (vii) a variety of biological and soft-matter systems, e.g. foams and cellular materials, vesicles of different shapes and genera, biomimetic membranes, and filaments, (viii) topological insulators and topological superconductors, (ix) a variety of Dirac materials including Dirac and Weyl semimetals, as well as (x) knots and network structures. Topological databases and algorithms to model such materials have been also established in this book. In order to understand and properly characterize these important emergent materials, it is necessary to go far beyond the traditional paradigm of microscopic structure–property–function relationships to a paradigm that explicitly incorporates topological aspects from the outset to characterize and/or predict the physical properties and currently untapped functionalities of these advanced materials. Simulation and modeling tools including quantum chemistry, molecular dynamics, 3D visualization and tomography are also indispensable. These concepts have found applications in condensed matter physics, materials science and engineering, physical chemistry and biophysics, and the various topics covered in the book have potential applications in connection with novel synthesis techniques, sensing and catalysis. As such, the book offers a unique resource for graduate students and researchers alike.

Book Magnetic Monopole Noise

    Book Details:
  • Author : Ritika Dusad
  • Publisher : Springer Nature
  • Release : 2020-10-29
  • ISBN : 3030581934
  • Pages : 83 pages

Download or read book Magnetic Monopole Noise written by Ritika Dusad and published by Springer Nature. This book was released on 2020-10-29 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents the first ever measurement of the noise emitted by magnetic monopoles and the development of an exquisitely sensitive magnetic-field-noise spectrometer based on a superconducting quantum interference device (SQUID) that enabled it. Magnetic monopoles are highly elusive elementary particles exhibiting quantized magnetic charge. The prospects for studying them brightened recently with the theoretical discovery that the thermally excited states in certain classes of magnetic insulators exhibit all the characteristics of magnetic monopoles. Furthermore, in 2018, it was predicted that the random motion of magnetic monopoles inside would generate a very specific kind of magnetization noise. In this thesis, the author describes a new experimental technique, so-called spin noise spectroscopy, and the subsequent discovery of virtually all of the predicted features of the magnetic noise expected from a dense fluid of magnetic monopoles in crystals of Dy2Ti2O7. Remarkably, because this magnetic monopole noise occurs in the frequency range below 20kHz, when amplified by the SQUID it is actually audible to humans.

Book Chiral Solitons

    Book Details:
  • Author : Keh-fei Liu
  • Publisher : World Scientific
  • Release : 1987-04-01
  • ISBN : 9814507806
  • Pages : 580 pages

Download or read book Chiral Solitons written by Keh-fei Liu and published by World Scientific. This book was released on 1987-04-01 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: This review volume on topological and nontopological chiral solitons presents a global view on the current developments of this field in particle and nuclear physics. The book addresses problems in quantization, restoration of translational and rotational symmetry, and the field theoretical approach to solitons which are common problems in the field of solitons. Primarily aimed for graduate students and the novice in the field, the collected articless cover a broad spectrum of topics in formalism as well as phenomenology.

Book High Magnetic Field Science and Its Application in the United States

Download or read book High Magnetic Field Science and Its Application in the United States written by National Research Council and published by National Academies Press. This book was released on 2013-12-25 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States was convened by the National Research Council in response to a request by the National Science Foundation. This report answers three questions: (1) What is the current state of high-field magnet science, engineering, and technology in the United States, and are there any conspicuous needs to be addressed? (2) What are the current science drivers and which scientific opportunities and challenges can be anticipated over the next ten years? (3) What are the principal existing and planned high magnetic field facilities outside of the United States, what roles have U.S. high field magnet development efforts played in developing those facilities, and what potentials exist for further international collaboration in this area? A magnetic field is produced by an electrical current in a metal coil. This current exerts an expansive force on the coil, and a magnetic field is "high" if it challenges the strength and current-carrying capacity of the materials that create the field. Although lower magnetic fields can be achieved using commercially available magnets, research in the highest achievable fields has been, and will continue to be, most often performed in large research centers that possess the materials and systems know-how for forefront research. Only a few high field centers exist around the world; in the United States, the principal center is the National High Magnetic Field Laboratory (NHMFL). High Magnetic Field Science and Its Application in the United States considers continued support for a centralized high-field facility such as NHFML to be the highest priority. This report contains a recommendation for the funding and siting of several new high field nuclear magnetic resonance magnets at user facilities in different regions of the United States. Continued advancement in high-magnetic field science requires substantial investments in magnets with enhanced capabilities. High Magnetic Field Science and Its Application in the United States contains recommendations for the further development of all-superconducting, hybrid, and higher field pulsed magnets that meet ambitious but achievable goals.

Book 2D Monoelemental Materials  Xenes  and Related Technologies

Download or read book 2D Monoelemental Materials Xenes and Related Technologies written by Zongyu Huang and published by CRC Press. This book was released on 2022-04-19 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monoelemental 2D materials called Xenes have a graphene-like structure, intra-layer covalent bond, and weak van der Waals forces between layers. Materials composed of different groups of elements have different structures and rich properties, making Xenes materials a potential candidate for the next generation of 2D materials. 2D Monoelemental Materials (Xenes) and Related Technologies: Beyond Graphene describes the structure, properties, and applications of Xenes by classification and section. The first section covers the structure and classification of single-element 2D materials, according to the different main groups of monoelemental materials of different components and includes the properties and applications with detailed description. The second section discusses the structure, properties, and applications of advanced 2D Xenes materials, which are composed of heterogeneous structures, produced by defects, and regulated by the field. Features include: Systematically detailed single element materials according to the main groups of the constituent elements Classification of the most effective and widely studied 2D Xenes materials Expounding upon changes in properties and improvements in applications by different regulation mechanisms Discussion of the significance of 2D single-element materials where structural characteristics are closely combined with different preparation methods and the relevant theoretical properties complement each other with practical applications Aimed at researchers and advanced students in materials science and engineering, this book offers a broad view of current knowledge in the emerging and promising field of 2D monoelemental materials.