EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Expanding the Chemistry of D0 Transition Metals Through Redox active Ligands

Download or read book Expanding the Chemistry of D0 Transition Metals Through Redox active Ligands written by Nicole Annette Ketterer and published by . This book was released on 2008 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book New Avenues for Redox active Ligands

Download or read book New Avenues for Redox active Ligands written by Daniël Laurens Johannes Broere and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Many homogeneous and heterogeneous catalyst systems contain one or more transition metals. The widespread employment of these metals as catalysts is ascribed to their accessible d-orbitals to activate chemical bonds, and the ability to undergo metal-based oxidation state changes to facilitate desirable chemical transformations. The fine-tuning of homogeneous catalyst systems is commonly achieved by the coordination of (spectator) ligands, which can vary greatly in steric bulk or electron-donating ability. For such ligands the energy required for oxidation or reduction of the ligand is much bigger than that needed to change the oxidation state of the metal. Accordingly, the redox changes required for bond making and breaking processes typically occur at the metal center. Redox-active ligands have more energetically accessible levels for reduction and/or oxidation upon coordination to a metal. As a result, either solely ligand-centered redox processes can occur, with the metal center remaining in the same oxidation state, or more diffuse scenarios, wherein both the ligand and metal change oxidation states in a synergistic fashion. Although initially thought of as a spectroscopic curiosity, redox-active ligands are nowadays recognized for their ability to induce new reactivity at metal centers. Within this thesis we have shown that o-aminophenol derived architectures can give fascinating spectroscopic properties upon coordination to late transition metals. Moreover, these ligands can expand upon a metal's "common" reactivity by actively taking part in intramolecular redox processes. We have demonstrated that intramolecular single-electron transfer processes can facilitate homolytic bond cleaving reactions and the generation of reactive nitrogen-centered radicals."--Samenvatting auteur.

Book Redox Active Ligands

    Book Details:
  • Author : Marine Desage-El Murr
  • Publisher : John Wiley & Sons
  • Release : 2024-01-31
  • ISBN : 352783088X
  • Pages : 373 pages

Download or read book Redox Active Ligands written by Marine Desage-El Murr and published by John Wiley & Sons. This book was released on 2024-01-31 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Redox-Active Ligands Authoritative resource showcasing a new family of ligands that can lead to better catalysts and promising applications in organic synthesis Redox-Active Ligands gives a comprehensive overview of the unique features of redox-active ligands, describing their structure and synthesis, the characterization of their coordination complexes, and important applications in homogeneous catalysis. The work reflects the diversity of the subject by including ongoing research spanning coordination chemistry, organometallic chemistry, bioinspired catalysis, proton and electron transfer, and the ability of such ligands to interact with early and late transition metals, lanthanides, and actinides. The book is divided into three parts, devoted to introduction and concepts, applications, and case studies. After the introduction on key concepts related to the field, and the different types of ligands and complexes in which ligand-centered redox activity is commonly observed, mechanistic and computational studies are described. The second part focuses on catalytic applications of redox-active complexes, including examples from radical transformations, coordination chemistry and organic synthesis. Finally, case studies of redox-active guanidine ligands, and of lanthanides and actinides are presented. Other specific sample topics covered include: An overview of the electronic features of redox-active ligands, covering their historical perspective and biological background The versatility and mode of action of redox-active ligands, which sets them apart from more classic and tunable ligands such as phosphines or N-heterocyclic carbenes Preparation and catalytic applications of complexes of stable N-aryl radicals Metal complexes with redox-active ligands in H+/e- transfer transformations By providing up-to-date information on important concepts and applications, Redox-Active Ligands is an essential reading for researchers working in organometallic and coordination chemistry, catalysis, organic synthesis, and (bio)inorganic chemistry, as well as newcomers to the field.

Book Redox Active Ligands

    Book Details:
  • Author : Marine Desage-El Murr
  • Publisher : John Wiley & Sons
  • Release : 2024-02-05
  • ISBN : 3527348506
  • Pages : 373 pages

Download or read book Redox Active Ligands written by Marine Desage-El Murr and published by John Wiley & Sons. This book was released on 2024-02-05 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Redox-Active Ligands Authoritative resource showcasing a new family of ligands that can lead to better catalysts and promising applications in organic synthesis Redox-Active Ligands gives a comprehensive overview of the unique features of redox-active ligands, describing their structure and synthesis, the characterization of their coordination complexes, and important applications in homogeneous catalysis. The work reflects the diversity of the subject by including ongoing research spanning coordination chemistry, organometallic chemistry, bioinspired catalysis, proton and electron transfer, and the ability of such ligands to interact with early and late transition metals, lanthanides, and actinides. The book is divided into three parts, devoted to introduction and concepts, applications, and case studies. After the introduction on key concepts related to the field, and the different types of ligands and complexes in which ligand-centered redox activity is commonly observed, mechanistic and computational studies are described. The second part focuses on catalytic applications of redox-active complexes, including examples from radical transformations, coordination chemistry and organic synthesis. Finally, case studies of redox-active guanidine ligands, and of lanthanides and actinides are presented. Other specific sample topics covered include: An overview of the electronic features of redox-active ligands, covering their historical perspective and biological background The versatility and mode of action of redox-active ligands, which sets them apart from more classic and tunable ligands such as phosphines or N-heterocyclic carbenes Preparation and catalytic applications of complexes of stable N-aryl radicals Metal complexes with redox-active ligands in H+/e- transfer transformations By providing up-to-date information on important concepts and applications, Redox-Active Ligands is an essential reading for researchers working in organometallic and coordination chemistry, catalysis, organic synthesis, and (bio)inorganic chemistry, as well as newcomers to the field.

Book Transition Metal Complexes with Redox active Ligands

Download or read book Transition Metal Complexes with Redox active Ligands written by Shawn Michael Swavey and published by . This book was released on 1998 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Design of Redox active Ligands

Download or read book Design of Redox active Ligands written by Nico Matteo Bonanno and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis describes the design, synthesis, properties, and coordination chemistry of redoxactive ligands. This thesis also explores new ways of expanding our ligand systems, in order to improve their binding capacities. We accomplished this by utilizing familiar redox-active moieties and structures to those published previously in our group, but with enhanced topological capacities and predictable structural outcomes. Chapter 1 begins with a general outline of the fundamental principles that govern organic radicals including; their reactivity, their properties and applications, and how these can be applied to the design of ligands for polynuclear assembly. Chapter 2 starts with a brief overview of arylazo ligands and the synthesis of a new hydrazone substituted phenalenol ligand (2.1). In the following section (2.2) we use this ligand to produce homoleptic ligand mixed-valence complexes featuring trivalent cobalt and iron metals. The chapter is concluded (2.3) with the synthesis of a new ditopic aryl-azo ligand and its cobalt coordination chemistry involving a neutral tetra-radical/tetra-nuclear molecular grid featuring valence tautomerism. Chapter 3 begins with the design and synthesis of a new ditopic diamino phenol ligand, which was found to oxidize to a neutral stable phenoxyl radical (3.1-3.2). The solution properties, which include reversible pi-dimerization of this stable radical are also described (3.3), and later the substitution chemistry of this new ligand is explored (3.4). In chapter 4, we describe the coordination chemistry of this new ditopic aminophenol ligand, which includes assembly into several coordination clusters involving copper (4.2), iron (4.3), nickel (4.4), and zinc (4.5). These coordination clusters feature the ligand in a variety of oxidation states; including rare examples of dianion "aminyl" radical clusters. In chapter 5, we begin with a description of a new synthetic derivative which can be used for the construction of larger tetratopic or asymmetric diamino phenol ligands. In 5.2 we describe the synthesis of a tetratopic aminophenol ligand along with its reactivity and aerial oxidation to a tri-phenoxyl radical. In 5.3, we conclude the thesis with the use of an asymmetric diamino phenol ligand and it's Cu(II/III) coordination chemistry, which displayed unique reactivity with molecular oxygen.

Book Design and Synthesis of a Series of Redox Active Tetrazine and Triazine Based Transition Metal Complexes

Download or read book Design and Synthesis of a Series of Redox Active Tetrazine and Triazine Based Transition Metal Complexes written by Yixin Zhang and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of two different chelating redox active ligands, 2,6-bis(6-methyl-1,2,4,5-3-yl) pyridine (BTZP) and 2,6-bis-(5,6-dialkyl-1,2,4-triazin-3-yl)-pyridine (BTP) in heterometallic first row and second row transition metal chemistry has yielded two new families of redox active metal complexes. These complexes were found to exhibit interesting electrochemical and magnetic properties. In this thesis, Chapter 1 lays the foundation for the research presented within. This section covers the fundamentals of the ligand design, ligand synthesis and related coordination chemistry literature review. Chapters 2 and 3 report the results of the current thesis. In Chapter 2, the synthesis and characterization of a family of discrete molecules and supramolecular arrangements, employing the ligand BTZP, is presented. All of the complexes presented in Chapter 2 are successfully synthesized and characterized with electrochemical and magnetic studies. According to the electrochemical data, it is found that the classic "terpy-like" complexes with [Co(BTZP) 2]2+ formula fosters more stability in the redox process. In Chapter 3, a family of transition metal complexes with [M(BTP) 2]2+ (M=Fe or Co) inorganic cores were obtained through the employment of the ligand BTP with various anions. In addition, dimeric molecules with [CoX4(BTP)2] formula were also obtained by solvothermal synthesis. The complexes were also electrochemically characterized, with all the complexes capable of being reduced, while only [CoII(BTP)2] (ClO4)2 showed reversible redox process. Similar with BTZP, the series of BTP based complexes are also characterized through magnetic measurement. Only cobalt-based BTP complexes are paramagnetic, with [CoII(BTP)2]2+ being spin crossover active when BF4- and ClO4- are present. However, the presence of NCS- and halides lead to either antiferromagnetic interactions and ferromagnetic interactions dominating at different temperature regimes.

Book Redox active ligands and their transition metal complexes

Download or read book Redox active ligands and their transition metal complexes written by Ashley Board and published by . This book was released on 2009 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Organometallic Chemistry of the Transition Metals

Download or read book The Organometallic Chemistry of the Transition Metals written by Robert H. Crabtree and published by John Wiley & Sons. This book was released on 2019-07-18 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides vital information on organometallic compounds, their preparation, and use in synthesis, and explores the fundamentals of the field and its modern applications Fully updated and expanded to reflect recent advances, the new, seventh edition of this bestselling text presents students and professional chemists with a comprehensive introduction to the principles and general properties of organometallic compounds, as well as including practical information on reaction mechanisms and detailed descriptions of contemporary applications. Increased focus is given to organic synthesis applications, nanoparticle science, and green chemistry. This edition features up-to-date examples of fundamental reaction steps and greater emphasis on key topics like oxidation catalysis, CH functionalization, nanoclusters and nanoparticles, and green chemistry. New coverage is added for computational chemistry, energy production, and biochemical aspects of organometallic chemistry. The Organometallic Chemistry of the Transition Metals, Seventh Edition provides new/enhanced chapter coverage of ligand-assisted additions and eliminations; proton-coupled electron transfer; surface, supported, and cooperative catalysis; green, energy, and materials applications; and photoredox catalysis. It covers coordination chemistry; alkyls and hydrides; Pi-complexes; and oxidative addition and reductive elimination. The book also features sections on insertion and elimination; spectroscopy; metathesis polymerization and bond activation; and more. Provides an excellent foundation of the fundamentals of organometallic chemistry Includes end-of-chapter problems and their solutions Expands and includes up-to-date examples of fundamental reaction steps and focuses on important topics such as oxidation catalysis, CH functionalization, nanoparticles, and green chemistry Features all new coverage for computational chemistry, energy production, and biochemical aspects of organometallic chemistry The Organometallic Chemistry of the Transition Metals, Seventh Edition is an insightful book that will appeal to all advanced undergraduate and graduate students in organic chemistry, organometallic chemistry, inorganic chemistry, and bioinorganic chemistry, as well as any practicing chemist in those fields.

Book An Exploration of Mid  to High valent Transition Metal Complexes for Application to Catalysis

Download or read book An Exploration of Mid to High valent Transition Metal Complexes for Application to Catalysis written by Kelly E. Aldrich and published by . This book was released on 2019 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: The valency or oxidation state of a transition metal in a complex plays a large role in determining the reactivity of the complex. With transition metal chemistry, historically accessible chemistry has often focused on metals in a low oxidation state. However, transformations involving transition metals in high oxidation states are of equal importance in providing complex products for use in consumer products. Expanding the applications and understanding of transition metal complexes in high oxidation states is the focus of the research presented in this dissertation. Fundamental studies of how ligands interact with high valent metals is presented in chapters 2 and 3, where a chromium(VI) model complex has been used to study bonding interactions between this d0 transition metal and phosphine ligands. Practical application of high valent titanium(IV) catalysts to C--N bond forming reactions is presented in chapters 4--6. Finally, chapters 7 and 8 focus on the changes in the character of M--N double bonds, with M=Fe and Ru, as the metal is forced to higher oxidation states. Collectively, these studies demonstrate different approaches to the same general problems and questions of how chemists can better understand and utilize high valent transitions metals to do catalytically-target desired transformations.

Book Functionalized Redox Systems

Download or read book Functionalized Redox Systems written by Toshikazu Hirao and published by Springer. This book was released on 2015-01-23 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book the authors describe how they reproduced the redox functions of biocatalysts artificially. It includes the introduction and discussion of synthetic reactions via electron transfer, hybrid π-conjugated systems, and biorganometallic conjugates as novel redox systems. The work was conducted in pioneering fields based on redox systems, in synthetic organic chemistry, synthetic materials chemistry, and bioorganometallic chemistry. The step-by-step process is illustrated by the three major parts of the book: redox reactions (selective synthetic methods using metal-induced redox reactions), redox systems (design and redox function of conjugated complexes with polyanilines or quinonediimines and molecular bowl sumanene), and design of bioorganometallic conjugates to induce chirality-organized structures (bio-related structurally controlled systems). This systematic and up-to-date description will be of special interest to graduate students who are meeting the new challenges of chemistry, as well as to post-doctoral researchers and other practicing chemists in both academic and industrial settings.

Book New Pathways for Organic Synthesis

Download or read book New Pathways for Organic Synthesis written by H.M. Colquhoun and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: The continually growing contribution of transition metal chemistry to synthetic organic chemistry is, of course, widely recognized. Equally well known is the difficulty in keeping up-to-date with the multifarious reactions and procedures that seem to be spawned at an ever-increasing rate. These can certainly be summarized on the basis of reviews under the headings of the individual transition metals. More useful to the bench organic chemist, however, would be the opposite type of concordance based on the structural type of the desired synthetic product. This is the approach taken in the present monograph, which presents for each structural entity a conspectus of the transition metal-mediated processes that can be employed in its production. The resulting comparative survey should be a great help in devising the optimum synthetic approach for a particular goal. It is presented from an essentially practical viewpoint, with detailed direc tions interspersed in the Houben-Weyl style. The wide scope of the volume should certainly encourage synthetic organic chemists to utilize fully the range and versatility of these transition metal-mediated processes. This will certainly be a well-thumbed reference book! R. A. RAPHAEL Cambridge University v Preface In recent years an enormous amount of work has been done on the catalysis of organic reactions by various transition metal species and on the organic reactivity of organo-transition-metal compounds.

Book Redox Active Ligands in Metal Complexes

Download or read book Redox Active Ligands in Metal Complexes written by Kaim and published by . This book was released on 2016-10-19 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Authored by one of the world's leading experts in the field, this treatment of a core topic in coordination chemistry discusses the fundamentals, including the physical properties and chemical reactivity, followed by interesting applications in catalysis and biochemistry. The result is a perfect overview for all newcomers to the field as well as more experienced researchers.

Book Transition Metal Chemistry

Download or read book Transition Metal Chemistry written by M. Gerloch and published by . This book was released on 1994 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Controlling Redox Processes in Metal Complexes and Multifunctional Materials

Download or read book Controlling Redox Processes in Metal Complexes and Multifunctional Materials written by Khrystyna Herasymchuk and published by . This book was released on 2020 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transition metal complexes incorporating redox-active ligands have the potential to facilitate controlled multielectron chemistry, enabling their use in catalysis and energy storage applications. Moreover, the use of transition metal complexes containing redox-active ligands has been extended to two- (2D) and three-dimensional (3D) materials, such as supramolecular assemblies (i.e., metallacycles, molecular cages, or macrocycles) and metal-organic frameworks (MOFs) for catalytic, magnetic, electronic, and sensing applications. Salens (N2O2 bis(Schiff-base)-bis(phenolate) are an important class of redox-active ligands, and have been investigated in detail as they are able to stabilize both low and high metal oxidation states for the above-mentioned applications. The work in this thesis focuses on the synthesis and electronic structure elucidation of metal salen complexes in monomeric form, as discrete supramolecular assemblies and 3D MOFs. Structural and spectroscopic characterization of the neutral and oxidized species was completed using mass spectrometry, cyclic voltammetry, X-ray diffraction, NMR, UV-Vis-NIR, and EPR spectroscopies, as well as theoretical (DFT) calculations. Chapter 2 discusses the synthesis and electronic structure evaluation of a series of oxidized uranyl complexes, containing redox-active salen ligands with varying para-ring substituents (tBu, OMe, NMe2). Chapters 3 and 4 discuss the incorporation of a redox-active nickel salen complex equipped with pyridyl groups on the peripheral positions of the ligand framework into supramolecular structures via coordination-driven self-assembly. The self-assembly results in formation of a number of distinct metallacycles, affording di-, tetra-, and octa-ligand radical species. Finally, the design, synthesis, and incorporation of metal salen units into MOFs is discussed in Chapter 5. Preliminary assembly and oxidation experiments are presented as an opportunity to explore the redox-properties of salen complexes incorporated into a solid-state 3D framework. Overall, the work described in this thesis provides a pathway for salen ligand radical systems to be used in redox-controlled host-guest chemistry, catalysis, and sensing.