Download or read book Evolutionary Machine Design written by Nadia Nedjah and published by Nova Publishers. This book was released on 2005 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, genetic programming has attracted many researcher's attention and so became a consolidated methodology to automatically create new competitive computer programs. Concise and efficient synthesis of a variety of systems has been generated by evolutionary computations. Evolvable hardware is a growing discipline. It allows one to evolve creative and novel hardware architectures given the expected input/output behaviour. There are two kinds of evolvable hardware: extrinsic and intrinsic. The former relies on a simulated evolutionary process to evaluate the characteristics of the evolved designs while the latter uses hardware itself to do so. Usually, reconfigurable hardware such FPGA and FPAA are exploited. One of the main problems that still faces researchers in the field of evolutionary machine design is the scalability. This book is devoted to reporting innovative and significant progress in automatic machine design. Theoretical as well as practical chapters are contemplated. The scalability problem in evolutionary machine designs is addresses. The content of this book is divided into two main parts: evolvable hardware and genetic programming; and evolutionary designs. In the following, we give a brief description of the main contribution of each of the included chapters.
Download or read book Knowledge Incorporation in Evolutionary Computation written by Yaochu Jin and published by Springer. This book was released on 2013-04-22 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incorporation of a priori knowledge, such as expert knowledge, meta-heuristics and human preferences, as well as domain knowledge acquired during evolu tionary search, into evolutionary algorithms has received increasing interest in the recent years. It has been shown from various motivations that knowl edge incorporation into evolutionary search is able to significantly improve search efficiency. However, results on knowledge incorporation in evolution ary computation have been scattered in a wide range of research areas and a systematic handling of this important topic in evolutionary computation still lacks. This edited book is a first attempt to put together the state-of-art and re cent advances on knowledge incorporation in evolutionary computation within a unified framework. Existing methods for knowledge incorporation are di vided into the following five categories according to the functionality of the incorporated knowledge in the evolutionary algorithms. 1. Knowledge incorporation in representation, population initialization, - combination and mutation. 2. Knowledge incorporation in selection and reproduction. 3. Knowledge incorporation in fitness evaluations. 4. Knowledge incorporation through life-time learning and human-computer interactions. 5. Incorporation of human preferences in multi-objective evolutionary com putation. The intended readers of this book are graduate students, researchers and practitioners in all fields of science and engineering who are interested in evolutionary computation. The book is divided into six parts. Part I contains one introductory chapter titled "A selected introduction to evolutionary computation" by Yao, which presents a concise but insightful introduction to evolutionary computation.
Download or read book Evolutionary Design by Computers written by Peter Bentley and published by Morgan Kaufmann. This book was released on 1999-05-28 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Evolutionary Design By Computers offers an enticing preview of the future of computer-aided design: Design by Darwin." Lawrence J. Fogel, President, Natural Selection, Inc. "Evolutionary design by computers is the major revolution in design thinking of the 20th century and this book is the best introduction available." Professor John Frazer, Swire Chair and Head of School of Design, the Hong Kong Polytechnic University, Author of "An Evolutionary Architecture" "Peter Bentley has assembled and edited an important collection of papers that demonstrate, convincingly, the utility of evolutionary computation for engineering solutions to complex problems in design." David B. Fogel, Editor-in-Chief, IEEE Transactions on Evolutionary Computation Some of the most startling achievements in the use of computers to automate design are being accomplished by the use of evolutionary search algorithms to evolve designs. Evolutionary Design By Computers provides a showcase of the best and most original work of the leading international experts in Evolutionary Computation, Engineering Design, Computer Art, and Artificial Life. By bringing together the highest achievers in these fields for the first time, including a foreword by Richard Dawkins, this book provides the definitive coverage of significant developments in Evolutionary Design. This book explores related sub-areas of Evolutionary Design, including: design optimization creative design the creation of art artificial life. It shows for the first time how techniques in each area overlap, and promotes the cross-fertilization of ideas and methods.
Download or read book Designing Evolutionary Algorithms for Dynamic Environments written by Ronald W. Morrison and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: Details robustness, stability, and performance of Evolutionary Algorithms in dynamic environments
Download or read book Evolutionary Algorithms in Engineering Applications written by Dipankar Dasgupta and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: Evolutionary algorithms are general-purpose search procedures based on the mechanisms of natural selection and population genetics. They are appealing because they are simple, easy to interface, and easy to extend. This volume is concerned with applications of evolutionary algorithms and associated strategies in engineering. It will be useful for engineers, designers, developers, and researchers in any scientific discipline interested in the applications of evolutionary algorithms. The volume consists of five parts, each with four or five chapters. The topics are chosen to emphasize application areas in different fields of engineering. Each chapter can be used for self-study or as a reference by practitioners to help them apply evolutionary algorithms to problems in their engineering domains.
Download or read book Automating the Design of Data Mining Algorithms written by Gisele L. Pappa and published by Springer. This book was released on 2012-03-14 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining is a very active research area with many successful real-world app- cations. It consists of a set of concepts and methods used to extract interesting or useful knowledge (or patterns) from real-world datasets, providing valuable support for decision making in industry, business, government, and science. Although there are already many types of data mining algorithms available in the literature, it is still dif cult for users to choose the best possible data mining algorithm for their particular data mining problem. In addition, data mining al- rithms have been manually designed; therefore they incorporate human biases and preferences. This book proposes a new approach to the design of data mining algorithms. - stead of relying on the slow and ad hoc process of manual algorithm design, this book proposes systematically automating the design of data mining algorithms with an evolutionary computation approach. More precisely, we propose a genetic p- gramming system (a type of evolutionary computation method that evolves c- puter programs) to automate the design of rule induction algorithms, a type of cl- si cation method that discovers a set of classi cation rules from data. We focus on genetic programming in this book because it is the paradigmatic type of machine learning method for automating the generation of programs and because it has the advantage of performing a global search in the space of candidate solutions (data mining algorithms in our case), but in principle other types of search methods for this task could be investigated in the future.
Download or read book The Master Algorithm written by Pedro Domingos and published by Basic Books. This book was released on 2015-09-22 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recommended by Bill Gates A thought-provoking and wide-ranging exploration of machine learning and the race to build computer intelligences as flexible as our own In the world's top research labs and universities, the race is on to invent the ultimate learning algorithm: one capable of discovering any knowledge from data, and doing anything we want, before we even ask. In The Master Algorithm, Pedro Domingos lifts the veil to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He assembles a blueprint for the future universal learner--the Master Algorithm--and discusses what it will mean for business, science, and society. If data-ism is today's philosophy, this book is its bible.
Download or read book Introduction To Evolutionary Informatics written by Robert J Marks Ii and published by World Scientific. This book was released on 2017-02-27 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: Science has made great strides in modeling space, time, mass and energy. Yet little attention has been paid to the precise representation of the information ubiquitous in nature.Introduction to Evolutionary Informatics fuses results from complexity modeling and information theory that allow both meaning and design difficulty in nature to be measured in bits. Built on the foundation of a series of peer-reviewed papers published by the authors, the book is written at a level easily understandable to readers with knowledge of rudimentary high school math. Those seeking a quick first read or those not interested in mathematical detail can skip marked sections in the monograph and still experience the impact of this new and exciting model of nature's information.This book is written for enthusiasts in science, engineering and mathematics interested in understanding the essential role of information in closely examined evolution theory.
Download or read book The Design of Innovation written by David E. Goldberg and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: 7 69 6 A DESIGN APPROACH TO PROBLEM DIFFICULTY 71 1 Design and Problem Difficulty 71 2 Three Misconceptions 72 3 Hard Problems Exist 76 4 The 3-Way Decomposition and Its Core 77 The Core of Intra-BB Difficulty: Deception 5 77 6 The Core of Inter-BB Difficulty: Scaling 83 7 The Core of Extra-BB Difficulty: Noise 88 Crosstalk: All Roads Lead to the Core 8 89 9 From Multimodality to Hierarchy 93 10 Summary 100 7 ENSURING BUILDING BLOCK SUPPLY 101 1 Past Work 101 2 Facetwise Supply Model I: One BB 102 Facetwise Supply Model II: Partition Success 103 3 4 Population Size for BB Supply 104 Summary 5 106 8 ENSURING BUILDING BLOCK GROWTH 109 1 The Schema Theorem: BB Growth Bound 109 2 Schema Growth Somewhat More Generally 111 3 Designing for BB Market Share Growth 112 4 Selection Press ure for Early Success 114 5 Designing for Late in the Day 116 The Schema Theorem Works 6 118 A Demonstration of Selection Stall 7 119 Summary 122 8 9 MAKING TIME FOR BUILDING BLOCKS 125 1 Analysis of Selection Alone: Takeover Time 126 2 Drift: When Selection Chooses for No Reason 129 3 Convergence Times with Multiple BBs 132 4 A Time-Scales Derivation of Critical Locus 142 5 A Little Model of Noise-Induced Run Elongation 143 6 From Alleles to Building Blocks 147 7 Summary 148 10 DECIDING WELL 151 1 Why is Decision Making a Problem? 151
Download or read book Evolutionary Computation with Intelligent Systems written by R.S. Chauhan and published by CRC Press. This book was released on 2022-03-29 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on cutting-edge innovations and core theories, principles, and algorithms applicable to a wide area. Real-life applications, case studies, and examples are included along with emerging trends, design, and optimized solutions pivoting around the needs of Society 5.0. Evolutionary Computation with Intelligent Systems: A Multidisciplinary Approach to Society 5.0 provides a holistic view of evolutionary computation techniques including principles, procedures, and future applications with real-life examples. The book comprehensively explains evolutionary computation, design, principles, development trends, and optimization and describes how it can transform the operating context of the organization. It exemplifies the potential of evolutionary computation for the next generation and the role of cloud computing in shaping Society 5.0. It also provides insight into various platforms, paradigms, techniques, and tools used in diverse fields. This book appeals to a variety of readers such as academicians, researchers, research scholars, and postgraduates.
Download or read book Evolutionary Electronics written by Ricardo Salem Zebulum and published by CRC Press. This book was released on 2018-10-08 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the explosion of interest, research, and applications of evolutionary computation a new field emerges-evolutionary electronics. Focused on applying evolutionary computation concepts and techniques to the domain of electronics, many researchers now see it as holding the greatest potential for overcoming the drawbacks of conventional design techniques. Evolutionary Electronics: Automatic Design of Electronic Circuits and Systems by Genetic Algorithms formally introduces and defines this area of research, presents its main challenges in electronic design, and explores emerging technologies. It describes the evolutionary computation paradigm and its primary algorithms, and explores topics of current interest, such as multi-objective optimization. The authors examine numerous evolutionary electronics applications, draw conclusions about those applications, and sketch the future of evolutionary computation and its applications in electronics. In coming years, the appearance of more and more advanced technologies will increase the complexity of optimization and synthesis problems, and evolutionary electronics will almost certainly become a key to solving those problems. Evolutionary Electronics is your key to discovering and unlocking the potential of this promising new field.
Download or read book Evolutionary Optimization written by Ruhul Sarker and published by Springer Science & Business Media. This book was released on 2002-01-31 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of evolutionary computation techniques has grown considerably over the past several years. Over this time, the use and applications of these techniques have been further enhanced resulting in a set of computational intelligence (also known as modern heuristics) tools that are particularly adept for solving complex optimization problems. Moreover, they are characteristically more robust than traditional methods based on formal logics or mathematical programming for many real world OR/MS problems. Hence, evolutionary computation techniques have dealt with complex optimization problems better than traditional optimization techniques although they can be applied to easy and simple problems where conventional techniques work well. Clearly there is a need for a volume that both reviews state-of-the-art evolutionary computation techniques, and surveys the most recent developments in their use for solving complex OR/MS problems. This volume on Evolutionary Optimization seeks to fill this need. Evolutionary Optimization is a volume of invited papers written by leading researchers in the field. All papers were peer reviewed by at least two recognized reviewers. The book covers the foundation as well as the practical side of evolutionary optimization.
Download or read book Data Driven Evolutionary Optimization written by Yaochu Jin and published by Springer Nature. This book was released on 2021-06-28 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended for researchers and practitioners alike, this book covers carefully selected yet broad topics in optimization, machine learning, and metaheuristics. Written by world-leading academic researchers who are extremely experienced in industrial applications, this self-contained book is the first of its kind that provides comprehensive background knowledge, particularly practical guidelines, and state-of-the-art techniques. New algorithms are carefully explained, further elaborated with pseudocode or flowcharts, and full working source code is made freely available. This is followed by a presentation of a variety of data-driven single- and multi-objective optimization algorithms that seamlessly integrate modern machine learning such as deep learning and transfer learning with evolutionary and swarm optimization algorithms. Applications of data-driven optimization ranging from aerodynamic design, optimization of industrial processes, to deep neural architecture search are included.
Download or read book Introduction to Evolutionary Computing written by A.E. Eiben and published by Springer Science & Business Media. This book was released on 2007-08-06 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.
Download or read book Hands On Genetic Algorithms with Python written by Eyal Wirsansky and published by Packt Publishing Ltd. This book was released on 2020-01-31 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the ever-growing world of genetic algorithms to solve search, optimization, and AI-related tasks, and improve machine learning models using Python libraries such as DEAP, scikit-learn, and NumPy Key Features Explore the ins and outs of genetic algorithms with this fast-paced guide Implement tasks such as feature selection, search optimization, and cluster analysis using Python Solve combinatorial problems, optimize functions, and enhance the performance of artificial intelligence applications Book DescriptionGenetic algorithms are a family of search, optimization, and learning algorithms inspired by the principles of natural evolution. By imitating the evolutionary process, genetic algorithms can overcome hurdles encountered in traditional search algorithms and provide high-quality solutions for a variety of problems. This book will help you get to grips with a powerful yet simple approach to applying genetic algorithms to a wide range of tasks using Python, covering the latest developments in artificial intelligence. After introducing you to genetic algorithms and their principles of operation, you'll understand how they differ from traditional algorithms and what types of problems they can solve. You'll then discover how they can be applied to search and optimization problems, such as planning, scheduling, gaming, and analytics. As you advance, you'll also learn how to use genetic algorithms to improve your machine learning and deep learning models, solve reinforcement learning tasks, and perform image reconstruction. Finally, you'll cover several related technologies that can open up new possibilities for future applications. By the end of this book, you'll have hands-on experience of applying genetic algorithms in artificial intelligence as well as in numerous other domains.What you will learn Understand how to use state-of-the-art Python tools to create genetic algorithm-based applications Use genetic algorithms to optimize functions and solve planning and scheduling problems Enhance the performance of machine learning models and optimize deep learning network architecture Apply genetic algorithms to reinforcement learning tasks using OpenAI Gym Explore how images can be reconstructed using a set of semi-transparent shapes Discover other bio-inspired techniques, such as genetic programming and particle swarm optimization Who this book is for This book is for software developers, data scientists, and AI enthusiasts who want to use genetic algorithms to carry out intelligent tasks in their applications. Working knowledge of Python and basic knowledge of mathematics and computer science will help you get the most out of this book.
Download or read book Genetic and Evolutionary Computation GECCO 2004 written by Kalyanmoy Deb and published by Springer. This book was released on 2004-10-12 with total page 1448 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two volume set LNCS 3102/3103 constitutes the refereed proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2004, held in Seattle, WA, USA, in June 2004. The 230 revised full papers and 104 poster papers presented were carefully reviewed and selected from 460 submissions. The papers are organized in topical sections on artificial life, adaptive behavior, agents, and ant colony optimization; artificial immune systems, biological applications; coevolution; evolutionary robotics; evolution strategies and evolutionary programming; evolvable hardware; genetic algorithms; genetic programming; learning classifier systems; real world applications; and search-based software engineering.
Download or read book Advances in Evolutionary Computing written by Ashish Ghosh and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 1001 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a collection of fourty articles containing new material on both theoretical aspects of Evolutionary Computing (EC), and demonstrating the usefulness/success of it for various kinds of large-scale real world problems. Around 23 articles deal with various theoretical aspects of EC and 17 articles demonstrate the success of EC methodologies. These articles are written by leading experts of the field from different countries all over the world.