EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Evaluating and Improving Undergraduate Teaching in Science  Technology  Engineering  and Mathematics

Download or read book Evaluating and Improving Undergraduate Teaching in Science Technology Engineering and Mathematics written by National Research Council and published by National Academies Press. This book was released on 2003-01-19 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: Economic, academic, and social forces are causing undergraduate schools to start a fresh examination of teaching effectiveness. Administrators face the complex task of developing equitable, predictable ways to evaluate, encourage, and reward good teaching in science, math, engineering, and technology. Evaluating, and Improving Undergraduate Teaching in Science, Technology, Engineering, and Mathematics offers a vision for systematic evaluation of teaching practices and academic programs, with recommendations to the various stakeholders in higher education about how to achieve change. What is good undergraduate teaching? This book discusses how to evaluate undergraduate teaching of science, mathematics, engineering, and technology and what characterizes effective teaching in these fields. Why has it been difficult for colleges and universities to address the question of teaching effectiveness? The committee explores the implications of differences between the research and teaching cultures-and how practices in rewarding researchers could be transferred to the teaching enterprise. How should administrators approach the evaluation of individual faculty members? And how should evaluation results be used? The committee discusses methodologies, offers practical guidelines, and points out pitfalls. Evaluating, and Improving Undergraduate Teaching in Science, Technology, Engineering, and Mathematics provides a blueprint for institutions ready to build effective evaluation programs for teaching in science fields.

Book Evaluating and Improving Undergraduate Teaching in Science  Technology  Engineering  and Mathematics

Download or read book Evaluating and Improving Undergraduate Teaching in Science Technology Engineering and Mathematics written by National Research Council and published by . This book was released on 2002-12-19 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Economic, academic, and social forces are causing undergraduate schools to start a fresh examination of teaching effectiveness. Administrators face the complex task of developing equitable, predictable ways to evaluate, encourage, and reward good teaching in science, math, engineering, and technology. Evaluating, and Improving Undergraduate Teaching in Science, Technology, Engineering, and Mathematics offers a vision for systematic evaluation of teaching practices and academic programs, with recommendations to the various stakeholders in higher education about how to achieve change. What is good undergraduate teaching? This book discusses how to evaluate undergraduate teaching of science, mathematics, engineering, and technology and what characterizes effective teaching in these fields. Why has it been difficult for colleges and universities to address the question of teaching effectiveness? The committee explores the implications of differences between the research and teaching cultures-and how practices in rewarding researchers could be transferred to the teaching enterprise. How should administrators approach the evaluation of individual faculty members? And how should evaluation results be used? The committee discusses methodologies, offers practical guidelines, and points out pitfalls. Evaluating, and Improving Undergraduate Teaching in Science, Technology, Engineering, and Mathematics provides a blueprint for institutions ready to build effective evaluation programs for teaching in science fields.

Book Improving Undergraduate Instruction in Science  Technology  Engineering  and Mathematics

Download or read book Improving Undergraduate Instruction in Science Technology Engineering and Mathematics written by National Research Council and published by National Academies Press. This book was released on 2003-05-28 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Participants in this workshop were asked to explore three related questions: (1) how to create measures of undergraduate learning in STEM courses; (2) how such measures might be organized into a framework of criteria and benchmarks to assess instruction; and (3) how such a framework might be used at the institutional level to assess STEM courses and curricula to promote ongoing improvements. The following issues were highlighted: Effective science instruction identifies explicit, measurable learning objectives. Effective teaching assists students in reconciling their incomplete or erroneous preconceptions with new knowledge. Instruction that is limited to passive delivery of information requiring memorization of lecture and text contents is likely to be unsuccessful in eliciting desired learning outcomes. Models of effective instruction that promote conceptual understanding in students and the ability of the learner to apply knowledge in new situations are available. Institutions need better assessment tools for evaluating course design and effective instruction. Deans and department chairs often fail to recognize measures they have at their disposal to enhance incentives for improving education. Much is still to be learned from research into how to improve instruction in ways that enhance student learning.

Book Transforming Undergraduate Education in Science  Mathematics  Engineering  and Technology

Download or read book Transforming Undergraduate Education in Science Mathematics Engineering and Technology written by National Research Council and published by National Academies Press. This book was released on 1999-03-25 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today's undergraduate studentsâ€"future leaders, policymakers, teachers, and citizens, as well as scientists and engineersâ€"will need to make important decisions based on their understanding of scientific and technological concepts. However, many undergraduates in the United States do not study science, mathematics, engineering, or technology (SME&T) for more than one year, if at all. Additionally, many of the SME&T courses that students take are focused on one discipline and often do not give students an understanding about how disciplines are interconnected or relevant to students' lives and society. To address these issues, the National Research Council convened a series of symposia and forums of representatives from SME&T educational and industrial communities. Those discussions contributed to this book, which provides six vision statements and recommendations for how to improve SME&T education for all undergraduates. The book addresses pre-college preparation for students in SME&T and the joint roles and responsibilities of faculty and administrators in arts and sciences and in schools of education to better educate teachers of K-12 mathematics, science, and technology. It suggests how colleges can improve and evaluate lower-division undergraduate courses for all students, strengthen institutional infrastructures to encourage quality teaching, and better prepare graduate students who will become future SME&T faculty.

Book Indicators for Monitoring Undergraduate STEM Education

Download or read book Indicators for Monitoring Undergraduate STEM Education written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2018-04-08 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: Science, technology, engineering and mathematics (STEM) professionals generate a stream of scientific discoveries and technological innovations that fuel job creation and national economic growth. Ensuring a robust supply of these professionals is critical for sustaining growth and creating jobs growth at a time of intense global competition. Undergraduate STEM education prepares the STEM professionals of today and those of tomorrow, while also helping all students develop knowledge and skills they can draw on in a variety of occupations and as individual citizens. However, many capable students intending to major in STEM later switch to another field or drop out of higher education altogether, partly because of documented weaknesses in STEM teaching, learning and student supports. Improving undergraduate STEM education to address these weaknesses is a national imperative. Many initiatives are now underway to improve the quality of undergraduate STEM teaching and learning. Some focus on the national level, others involve multi-institution collaborations, and others take place on individual campuses. At present, however, policymakers and the public do not know whether these various initiatives are accomplishing their goals and leading to nationwide improvement in undergraduate STEM education. Indicators for Monitoring Undergraduate STEM Education outlines a framework and a set of indicators that document the status and quality of undergraduate STEM education at the national level over multiple years. It also indicates areas where additional research is needed in order to develop appropriate measures. This publication will be valuable to government agencies that make investments in higher education, institutions of higher education, private funders of higher education programs, and industry stakeholders. It will also be of interest to researchers who study higher education.

Book Discipline Based Education Research

Download or read book Discipline Based Education Research written by National Research Council and published by National Academies Press. This book was released on 2012-08-27 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: The National Science Foundation funded a synthesis study on the status, contributions, and future direction of discipline-based education research (DBER) in physics, biological sciences, geosciences, and chemistry. DBER combines knowledge of teaching and learning with deep knowledge of discipline-specific science content. It describes the discipline-specific difficulties learners face and the specialized intellectual and instructional resources that can facilitate student understanding. Discipline-Based Education Research is based on a 30-month study built on two workshops held in 2008 to explore evidence on promising practices in undergraduate science, technology, engineering, and mathematics (STEM) education. This book asks questions that are essential to advancing DBER and broadening its impact on undergraduate science teaching and learning. The book provides empirical research on undergraduate teaching and learning in the sciences, explores the extent to which this research currently influences undergraduate instruction, and identifies the intellectual and material resources required to further develop DBER. Discipline-Based Education Research provides guidance for future DBER research. In addition, the findings and recommendations of this report may invite, if not assist, post-secondary institutions to increase interest and research activity in DBER and improve its quality and usefulness across all natural science disciples, as well as guide instruction and assessment across natural science courses to improve student learning. The book brings greater focus to issues of student attrition in the natural sciences that are related to the quality of instruction. Discipline-Based Education Research will be of interest to educators, policy makers, researchers, scholars, decision makers in universities, government agencies, curriculum developers, research sponsors, and education advocacy groups.

Book Reaching Students

Download or read book Reaching Students written by Nancy Kober and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Reaching Students presents the best thinking to date on teaching and learning undergraduate science and engineering. Focusing on the disciplines of astronomy, biology, chemistry, engineering, geosciences, and physics, this book is an introduction to strategies to try in your classroom or institution. Concrete examples and case studies illustrate how experienced instructors and leaders have applied evidence-based approaches to address student needs, encouraged the use of effective techniques within a department or an institution, and addressed the challenges that arose along the way."--Provided by publisher.

Book Inquiry Based Learning for Science  Technology  Engineering  and Math  STEM  Programs

Download or read book Inquiry Based Learning for Science Technology Engineering and Math STEM Programs written by Patrick Blessinger and published by Emerald Group Publishing. This book was released on 2015-10-20 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume covers the many issues and concepts of how IBL can be applied to STEM programs and serves as a conceptual and practical resource and guide for educators and offers practical examples of IBL in action and diverse strategies on how to implement IBL in different contexts.

Book Assessing and Improving Your Teaching

Download or read book Assessing and Improving Your Teaching written by Phyllis Blumberg and published by John Wiley & Sons. This book was released on 2013-09-06 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: In order to make appropriate changes to improve your teaching and your students’ learning, first you need to know how you’re teaching now. Figure it out for yourself and invigorate your teaching on your own terms! This practical evidence-based guide promotes excellence in teaching and improved student learning through self-reflection and self-assessment of one’s teaching. Phyllis Blumberg starts by reviewing the current approaches to instructor evaluation and describes their inadequacies. She then presents a new model of assessing teaching that builds upon a broader base of evidence and sources of support. This new model leads to self-assessment rubrics, which are available for download, and the book will guide you in how to use them. The book includes case studies of completed critical reflection rubrics from a variety of disciplines, including the performing and visual arts and the hard sciences, to show how they can be used in different ways and how to explore the richness of the data you’ll uncover.

Book Teaching and Learning STEM

Download or read book Teaching and Learning STEM written by Richard M. Felder and published by John Wiley & Sons. This book was released on 2024-03-19 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: The widely used STEM education book, updated Teaching and Learning STEM: A Practical Guide covers teaching and learning issues unique to teaching in the science, technology, engineering, and math (STEM) disciplines. Secondary and postsecondary instructors in STEM areas need to master specific skills, such as teaching problem-solving, which are not regularly addressed in other teaching and learning books. This book fills the gap, addressing, topics like learning objectives, course design, choosing a text, effective instruction, active learning, teaching with technology, and assessment—all from a STEM perspective. You’ll also gain the knowledge to implement learner-centered instruction, which has been shown to improve learning outcomes across disciplines. For this edition, chapters have been updated to reflect recent cognitive science and empirical educational research findings that inform STEM pedagogy. You’ll also find a new section on actively engaging students in synchronous and asynchronous online courses, and content has been substantially revised to reflect recent developments in instructional technology and online course development and delivery. Plan and deliver lessons that actively engage students—in person or online Assess students’ progress and help ensure retention of all concepts learned Help students develop skills in problem-solving, self-directed learning, critical thinking, teamwork, and communication Meet the learning needs of STEM students with diverse backgrounds and identities The strategies presented in Teaching and Learning STEM don’t require revolutionary time-intensive changes in your teaching, but rather a gradual integration of traditional and new methods. The result will be a marked improvement in your teaching and your students’ learning.

Book Cracking the code

    Book Details:
  • Author : UNESCO
  • Publisher : UNESCO Publishing
  • Release : 2017-09-04
  • ISBN : 9231002333
  • Pages : 82 pages

Download or read book Cracking the code written by UNESCO and published by UNESCO Publishing. This book was released on 2017-09-04 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report aims to 'crack the code' by deciphering the factors that hinder and facilitate girls' and women's participation, achievement and continuation in science, technology, engineering and mathematics (STEM) education and, in particular, what the education sector can do to promote girls' and women's interest in and engagement with STEM education and ultimately STEM careers.

Book Promising Practices in Undergraduate Science  Technology  Engineering  and Mathematics Education

Download or read book Promising Practices in Undergraduate Science Technology Engineering and Mathematics Education written by National Research Council and published by National Academies Press. This book was released on 2011-04-19 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerous teaching, learning, assessment, and institutional innovations in undergraduate science, technology, engineering, and mathematics (STEM) education have emerged in the past decade. Because virtually all of these innovations have been developed independently of one another, their goals and purposes vary widely. Some focus on making science accessible and meaningful to the vast majority of students who will not pursue STEM majors or careers; others aim to increase the diversity of students who enroll and succeed in STEM courses and programs; still other efforts focus on reforming the overall curriculum in specific disciplines. In addition to this variation in focus, these innovations have been implemented at scales that range from individual classrooms to entire departments or institutions. By 2008, partly because of this wide variability, it was apparent that little was known about the feasibility of replicating individual innovations or about their potential for broader impact beyond the specific contexts in which they were created. The research base on innovations in undergraduate STEM education was expanding rapidly, but the process of synthesizing that knowledge base had not yet begun. If future investments were to be informed by the past, then the field clearly needed a retrospective look at the ways in which earlier innovations had influenced undergraduate STEM education. To address this need, the National Research Council (NRC) convened two public workshops to examine the impact and effectiveness of selected STEM undergraduate education innovations. This volume summarizes the workshops, which addressed such topics as the link between learning goals and evidence; promising practices at the individual faculty and institutional levels; classroom-based promising practices; and professional development for graduate students, new faculty, and veteran faculty. The workshops concluded with a broader examination of the barriers and opportunities associated with systemic change.

Book Enhancing Undergraduate Learning with Information Technology

Download or read book Enhancing Undergraduate Learning with Information Technology written by National Research Council and published by National Academies Press. This book was released on 2002-02-09 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: Enhancing Undergraduate Learning with Information Technology reports on a meeting of scientists, policy makers, and researchers convened to discuss new approaches to undergraduate science, mathematics, and technology education. The goal of the workshop was to inform workshop participants and the public about issues surrounding the use of information technology in education. To reach this goal, the workshop participants paid particular attention to the following issues: What educational technologies currently exist and how they are being used to transform undergraduate science, engineering, mathematics, and technology education; What is known about the potential future impact of information technology on teaching and learning at the undergraduate level; How to evaluate the impact of information technology on teaching and learning; and What the future might hold.

Book Scientific Teaching

    Book Details:
  • Author : Jo Handelsman
  • Publisher : Macmillan
  • Release : 2007
  • ISBN : 9781429201889
  • Pages : 208 pages

Download or read book Scientific Teaching written by Jo Handelsman and published by Macmillan. This book was released on 2007 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Seasoned classroom veterans, pre-tenured faculty, and neophyte teaching assistants alike will find this book invaluable. HHMI Professor Jo Handelsman and her colleagues at the Wisconsin Program for Scientific Teaching (WPST) have distilled key findings from education, learning, and cognitive psychology and translated them into six chapters of digestible research points and practical classroom examples. The recommendations have been tried and tested in the National Academies Summer Institute on Undergraduate Education in Biology and through the WPST. Scientific Teaching is not a prescription for better teaching. Rather, it encourages the reader to approach teaching in a way that captures the spirit and rigor of scientific research and to contribute to transforming how students learn science.

Book Transforming Insitutions

    Book Details:
  • Author : Gabriela C. Weaver
  • Publisher : Purdue University Press
  • Release : 2016
  • ISBN : 1557537240
  • Pages : 530 pages

Download or read book Transforming Insitutions written by Gabriela C. Weaver and published by Purdue University Press. This book was released on 2016 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: Higher education is coming under increasing scrutiny, both publically and within academia, with respect to its ability to appropriately prepare students for the careers that will make them competitive in the 21st-century workplace. At the same time, there is a growing awareness that many global issues will require creative and critical thinking deeply rooted in the technical STEM (science, technology, engineering, and mathematics) disciplines. Transforming Institutions brings together chapters from the scholars and leaders who were part of the 2011 and 2014 conferences. It provides an overview of the context and challenges in STEM higher education, contributed chapters describing programs and research in this area, and a reflection and summary of the lessons from the many authors' viewpoints, leading to suggested next steps in the path toward transformation.

Book Undergraduate Research Experiences for STEM Students

Download or read book Undergraduate Research Experiences for STEM Students written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2017-06-19 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Undergraduate research has a rich history, and many practicing researchers point to undergraduate research experiences (UREs) as crucial to their own career success. There are many ongoing efforts to improve undergraduate science, technology, engineering, and mathematics (STEM) education that focus on increasing the active engagement of students and decreasing traditional lecture-based teaching, and UREs have been proposed as a solution to these efforts and may be a key strategy for broadening participation in STEM. In light of the proposals questions have been asked about what is known about student participation in UREs, best practices in UREs design, and evidence of beneficial outcomes from UREs. Undergraduate Research Experiences for STEM Students provides a comprehensive overview of and insights about the current and rapidly evolving types of UREs, in an effort to improve understanding of the complexity of UREs in terms of their content, their surrounding context, the diversity of the student participants, and the opportunities for learning provided by a research experience. This study analyzes UREs by considering them as part of a learning system that is shaped by forces related to national policy, institutional leadership, and departmental culture, as well as by the interactions among faculty, other mentors, and students. The report provides a set of questions to be considered by those implementing UREs as well as an agenda for future research that can help answer questions about how UREs work and which aspects of the experiences are most powerful.

Book Designing Professional Development for Teachers of Science and Mathematics

Download or read book Designing Professional Development for Teachers of Science and Mathematics written by Susan Loucks-Horsley and published by Corwin Press. This book was released on 2009-11-24 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classic guide for designing robust science and mathematics professional development programs! This expanded edition of one of the most widely cited resources in the field of professional development for mathematics and science educators demonstrates how to design professional development experiences for teachers that lead to improved student learning. Presenting an updated professional development (PD) planning framework, the third edition of the bestseller reflects recent research on PD design, underscores how beliefs and local factors can influence PD design, illustrates a wide range of PD strategies, and emphasizes the importance of: Continuous program monitoring Combining strategies to address diverse needs Building cultures that sustain learning