EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book EUV Actinic Defect Inspection and Defect Printability at the Sub 32 Nm Half Pitch

Download or read book EUV Actinic Defect Inspection and Defect Printability at the Sub 32 Nm Half Pitch written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Extreme ultraviolet (EUV) mask blanks with embedded phase defects were inspected with a reticle actinic inspection tool (AIT) and the Lasertec M7360. The Lasertec M7360, operated at SEMA TECH's Mask Blank Development Center (MBDC) in Albany, NY, has a sensitivity to multilayer defects down to 40-45 nm, which is not likely sufficient for mask blank development below the 32 nm half-pitch node. Phase defect printability was simulated to calculate the required defect sensitivity for a next generation blank inspection tool to support reticle development for the sub-32 nm half-pitch technology node. Defect mitigation technology is proposed to take advantage of mask blanks with some defects. This technology will reduce the cost of ownership of EUV mask blanks. This paper will also discuss the kind of infrastructure that will be required for the development and mass production stages.

Book Mask Defect Verification Using Actinic Inspection and Defect Mitigation Technology

Download or read book Mask Defect Verification Using Actinic Inspection and Defect Mitigation Technology written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The availability of defect-free masks remains one of the key challenges for inserting extreme ultraviolet lithography (EUVL) into high volume manufacturing. The successful production of defect-free masks will depend on the timely development of defect inspection tools, including both mask blank inspection tools and absorber pattern inspection tools to meet the 22 nm half-pitch node. EUV mask blanks with embedded phase defects were inspected with a reticle actinic inspection tool (AIT) and the Lasertec M7360. The Lasertec M7360 is operated at SEMA TECH's Mask blank Development Center (MBDC) in Albany, with sensitivity to multilayer defects down to 40-45 nm, which is not likely sufficient for mask blank development below the 32 nm half-pitch node. Phase defect printability was simulated to calculate the required defect sensitivity for the next generation blank inspection tool to support reticle development for the sub-32 nm half-pitch technology node. This paper will also discuss the kind of infrastructure that will be required in the development and mass production stages.

Book Printability and Inspectability of Defects on the EUV Mask for Sub32nm Half Pitch HVM Application

Download or read book Printability and Inspectability of Defects on the EUV Mask for Sub32nm Half Pitch HVM Application written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The availability of defect-free masks remains one of the key challenges for inserting extreme ultraviolet lithography (EUVL) into high volume manufacturing, yet little data is available for understanding native defects on real masks. In this paper, a full field EUV mask is fabricated to see the printability of various defects on the mask. Programmed pit defect shows that minimum printable size of pits could be 17 nm of SEVD from the AIT. However 23.1nm in SEVD is printable from the EUV ADT. Defect printability and identification of its source along from blank fabrication to mask fabrication were studied using various inspection tools. Capture ratio of smallest printable defects was improved to 80% using optimized stack of metrical on wafer and state-of-art wafer inspection tool. Requirement of defect mitigation technology using fiducial mark are defined.

Book Investigation of Buried EUV Mask Defect Printability Using Actinic Inspection and Fast Simulation

Download or read book Investigation of Buried EUV Mask Defect Printability Using Actinic Inspection and Fast Simulation written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The fast simulator RADICAL and the Actinic Inspection Tool (AIT) are used in advance of availability of high volume manufacturing quality exposure tools, resists, and masks to assess the expected defect printability levels in production conditions. AIT images are analyzed to qualitatively demonstrate general trends in defect printability: defects smaller than 0.5nm tall on the multilayer surface can cause an unacceptable critical dimension (CD) change, CD change increases for taller defects, and defect printability varies asymmetrically through focus. RADICAL is used to derive quantitative limits for defect size and demonstrate the effects of focus and illumination for 22nm and 16nm dense lines. For 22nm dense lines at best focus a 0.8nm tall defect causes a 10% CD change. For 16nm lines a 0.4nm tall defect causes a 10% CD change. The CD is shown to be more sensitive to buried defects out of focus, but less sensitive to defects in focus if annular or dipole illumination is used.

Book Detectability and Printability of EUVL Mask Blank Defects for The32 Nm HP Node

Download or read book Detectability and Printability of EUVL Mask Blank Defects for The32 Nm HP Node written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The readiness of a defect-free extreme ultraviolet lithography (EUVL) mask blank infrastructure is one of the main enablers for the insertion of EUVL technology into production. It is essential to have sufficient defect detection capability and understanding of defect printability to develop a defect-free EUVL mask blank infrastructure. The SEMATECH Mask Blank Development Center (MBDC) has been developing EUVL mask blanks with low defect densities with the Lasertec M1350 and M7360, the 1st and 2nd generations, respectively, of visible light EUVL mask blank inspection tools. Although the M7360 represents a significant improvement in our defect detection capability, it is time to start developing a 3rd generation tool for EUVL mask blank inspection. The goal of this tool is to detect all printable defects; therefore, understanding defect printability criteria is critical to this tool development. In this paper, we will investigate the defect detectability of a 2nd generation blank inspection tool and a patterned EUVL mask inspection tool. We will also compare the ability of the inspection tools to detect programmed defects whose printability has been estimated from wafer printing results and actinic aerial images results.

Book Actinic Inspection of Multilayer Defects on EUV Masks

Download or read book Actinic Inspection of Multilayer Defects on EUV Masks written by and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The production of defect-free mask blanks, and the development of techniques for inspecting and qualifying EUV mask blanks, remains a key challenge for EUV lithography. In order to ensure a reliable supply of defect-free mask blanks, it is necessary to develop techniques to reliably and accurately detect defects on un-patterned mask blanks. These inspection tools must be able to accurately detect all critical defects whilst simultaneously having the minimum possible false-positive detection rate. There continues to be improvement in high-speed non-actinic mask blank inspection tools, and it is anticipated that these tools can and will be used by industry to qualify EUV mask blanks. However, the outstanding question remains one of validating that non-actinic inspection techniques are capable of detecting all printable EUV defects. To qualify the performance of non-actinic inspection tools, a unique dual-mode EUV mask inspection system has been installed at the Advanced Light Source (ALS) synchrotron at Lawrence Berkeley National Laboratory. In high-speed inspection mode, whole mask blanks are scanned for defects using 13.5-nm wavelength light to identify and map all locations on the mask that scatter a significant amount of EUV light. In imaging, or defect review mode, a zone plate is placed in the reflected beam path to image a region of interest onto a CCD detector with an effective resolution on the mask of 100-nm or better. Combining the capabilities of the two inspection tools into one system provides the unique capability to determine the coordinates of native defects that can be used to compare actinic defect inspection with visible light defect inspection tools under commercial development, and to provide data for comparing scattering models for EUV mask defects.

Book Evaluating Printability of Buried Native EUV Mask Phase Defects Through a Modeling and Simulation Approach

Download or read book Evaluating Printability of Buried Native EUV Mask Phase Defects Through a Modeling and Simulation Approach written by and published by . This book was released on 2015 with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt: The availability of defect-free masks is considered to be a critical issue for enabling extreme ultraviolet lithography (EUVL) as the next generation technology. Since completely defect-free masks will be hard to achieve, it is essential to have a good understanding of the printability of the native EUV mask defects. In this work, we performed a systematic study of native mask defects to understand the defect printability caused by them. The multilayer growth over native substrate mask blank defects was correlated to the multilayer growth over regular-shaped defects having similar profiles in terms of their width and height. To model the multilayer growth over the defects, a novel level-set multilayer growth model was used that took into account the tool deposition conditions of the Veeco Nexus ion beam deposition tool. The same tool was used for performing the actual deposition of the multilayer stack over the characterized native defects, thus ensuring a fair comparison between the actual multilayer growth over native defects, and modeled multilayer growth over regular-shaped defects. Further, the printability of the characterized native defects was studied with the SEMATECH-Berkeley Actinic Inspection Tool (AIT), an EUV mask-imaging microscope at Lawrence Berkeley National Laboratory (LBNL). Printability of the modeled regular-shaped defects, which were propagated up the multilayer stack using level-set growth model was studied using defect printability simulations implementing the waveguide algorithm. Good comparison was observed between AIT and the simulation results, thus demonstrating that multilayer growth over a defect is primarily a function of a defect’s width and height, irrespective of its shape. This would allow us to predict printability of the arbitrarily-shaped native EUV mask defects in a systematic and robust manner.

Book Key Challenges in EUV Mask Technology

Download or read book Key Challenges in EUV Mask Technology written by Yow-Gwo Wang and published by . This book was released on 2005 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation focuses on issues related to extreme ultraviolet (EUV) lithography mask technology: mask inspection and mask 3D effects on imaging performance. Actinic (at- wavelength) mask inspection (both blank and patterned mask) is of critical concern for EUV lithography. In this dissertation, systematic studies exploring the optimal optical system design to improve the defect detection sensitivity for both actinic mask blank and patterned mask inspection tools using EUV light are presented. For EUV mask blank in- spection, a complete discussion is conducted to compare the conventional bright field method and the Zernike phase contrast method on their phase defect detection sensitivity by thin mask simulations and experiments using the SHARP EUV microscope at Lawrence Berke- ley National Laboratory (LBNL). The study shows that higher defect detection sensitivity and in-focus inspection capability can be achieved by the Zernike phase contrast method, while the conventional bright field method needs through-focus scanning and results in lower defect detection sensitivity. Experimental results show that a programmed defect as small as 0.35 nm in height is detected at best focus with a signal-to-noise ratio (SNR) ≈ 8 by the Zernike phase contrast method. With the considerations of various noise sources and system design, the thin mask simulation results show that the dark field method has better detection efficiency in inspection mode, while the Zernike phase contrast method is better in review mode (pixel size ≤ 25 nm). Further, the impact of pixel size, EUV source type, and photon collection efficiency for a dark field based actinic blank inspection tool is discussed by thin mask simulation. The simulation results show the complex correlation between each parameter on defect inspection efficiency and also show that 10-watt EUV source power and 100 nm pixel size are needed to capture a phase defect of height 0.5 nm. For EUV patterned mask inspection, the possibility of using the optimum phase shift in the pupil plane to improve inspection efficiency is discussed using a thin mask model. Then the nature of the EUV mask pattern defect is analyzed by its near field distribution using a thick mask model. The simulation results indicate that, as a result of 3D effects leading to phase artifacts, pattern defects cannot be simply treated as ideal absorber defects. The results can affect the choice of optimal patterned mask inspection tool design. Moreover, a study of a bright field based EUV actinic pattern inspection tool design using a hybrid (2D + 3D) model is presented, showing that the impact of noise sources and optical design on critical pattern defects detection sensitivity. The study shows that introducing a − 50 nm defocus into the inspection system can improve the SNR by 50%. The impact of EUV sub-resolution assist feature (SRAF) on mitigation of mask 3D effects is discussed by rigorous 3D modeling. The simulation results show that introducing SRAFs in the mask design induces even stronger effective single pole aberration into the imaging system to balance the Bossung curve. Asymmetric SRAFs pattern placement can achieve a 21% improvement of the process window. Moreover, the complex interaction between the main feature and the SRAFs is analyzed by systematic position sensitivity studies. Bossung tilt sensitivity with respect to the relative positions between main feature and SRAFs is shown, which indicates that different location precision requirements are needed for SRAFs during the mask-making process.

Book Comparison of Fast 3D Simulation and Actinic Inspection for EUV Masks with Buries Defects

Download or read book Comparison of Fast 3D Simulation and Actinic Inspection for EUV Masks with Buries Defects written by and published by . This book was released on 2009 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aerial images for isolated defects and the interactions of defects with features are compared between the Actinic Inspection Tool (AIT) at Lawrence Berkeley National Laboratory (LBNL) and the fast EUV simulation program RADICAL. Comparisons between AIT images from August 2007 and RADICAL simulations are used to extract aberrations. At this time astigmatism was the dominant aberration with a value of 0.55 waves RMS. Significant improvements in the imaging performance of the AIT were made between August 2007 and December 2008. A good match will be shown between the most recent AIT images and RADICAL simulations without aberrations. These comparisons will demonstrate that a large defect, in this case 7nm tall on the surface, is still printable even if it is centered under the absorber line. These comparisons also suggest that the minimum defect size is between 1.5nm and 0.8nm surface height because a 1.5nm defect was printable but a 0.8nm was not. Finally, the image of a buried defect near an absorber line through focus will demonstrate an inversion in the effect of the defect from a protrusion of the dark line into the space to a protrusion of the space into the line.

Book Actinic Inspection of EUV Programmed Multilayer Defects and Cross Comparison Measurements

Download or read book Actinic Inspection of EUV Programmed Multilayer Defects and Cross Comparison Measurements written by J. S. Taylor and published by . This book was released on 2006 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt: The production of defect-free mask blanks remains a key challenge for extreme ultraviolet (EUV) lithography. Integral to this effort is the development and characterization of mask inspection tools that are sensitive enough to detect critical defects with high confidence. Using a single programmed-defect mask with a range of buried bump-type defects, we report a comparison of measurements made in four different mask-inspection tools: one commercial tool using 488-nm wavelength illumination, one prototype tool that uses 266-nm illumination, and two non-commercial EUV ''actinic'' inspection tools. The EUV tools include a darkfield imaging microscope and a scanning microscope. Our measurements show improving sensitivity with the shorter wavelength non-EUV tool, down to 33-nm spherical-equivalent-volume diameter, for defects of this type. Measurements conditions were unique to each tool, with the EUV tools operating at a much slower inspection rate. Several defects observed with EUV inspection were below the detection threshold of the non-EUV tools.

Book EUV Pattern Defect Detection Sensitivity Based on Aerial Image Linewidth Measurements

Download or read book EUV Pattern Defect Detection Sensitivity Based on Aerial Image Linewidth Measurements written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: As the quality of EUV-wavelength mask inspection microscopes improves over time, the image properties and intensity profiles of reflected light can be evaluated in ever-greater detail. The SEMATECH Berkeley Actinic Inspection Tool (AIT) is one such microscope, featuring mask resolution values that match or exceed those available through lithographic printing in current photoresists. In order to evaluate the defect detection sensitivity of the AIT for dense line patterns on typical masks, the authors study the line width roughness (LWR) on two masks, as measured in the EUV images. They report the through-focus and pitch dependence of contrast, image log slope, linewidth, and LWR. The AIT currently reaches LWR 3[sigma] values close to 9 nm for 175 nm half-pitch lines. This value is below 10% linewidth for nearly all lines routinely measured in the AIT. Evidence suggests that this lower level may arise from the mask's inherent pattern roughness. While the sensitivity limit of the AlT has not yet been established, it is clear that the AIT has the required sensitivity to detect defects that cause 10% linewidth changes in line sizes of 125 nm and larger.

Book EMLC 2005

    Book Details:
  • Author : Uwe Behringer
  • Publisher : Margret Schneider
  • Release : 2005
  • ISBN : 3800728753
  • Pages : 301 pages

Download or read book EMLC 2005 written by Uwe Behringer and published by Margret Schneider. This book was released on 2005 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Study of Defects on EUV Mask Using Blank Inspection  Patterned Mask Inspection  and Wafer Inspection

Download or read book A Study of Defects on EUV Mask Using Blank Inspection Patterned Mask Inspection and Wafer Inspection written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The availability of defect-free masks remains one of the key challenges for inserting extreme ultraviolet lithography (EUVL) into high volume manufacturing. yet link data is available for understanding native defects on real masks. In this paper, a full-field EUV mask is fabricated to investigate the printability of various defects on the mask. The printability of defects and identification of their source from mask fabrication to handling were studied using wafer inspection. The printable blank defect density excluding particles and patterns is 0.63 cm2. Mask inspection is shown to have better sensitivity than wafer inspection. The sensitivity of wafer inspection must be improved using through-focus analysis and a different wafer stack.

Book JJAP

    Book Details:
  • Author :
  • Publisher :
  • Release : 2009
  • ISBN :
  • Pages : 904 pages

Download or read book JJAP written by and published by . This book was released on 2009 with total page 904 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Microlithography

Download or read book Microlithography written by Bruce W. Smith and published by CRC Press. This book was released on 2018-10-03 with total page 864 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition of the bestselling Microlithography: Science and Technology provides a balanced treatment of theoretical and operational considerations, from elementary concepts to advanced aspects of modern submicron microlithography. Each chapter reflects the current research and practices from the world's leading academic and industrial laboratories detailed by a stellar panel of international experts. New in the Second Edition In addition to updated information on existing material, this new edition features coverage of technologies developed over the last decade since the first edition appeared, including: Immersion Lithography 157nm Lithography Electron Projection Lithography (EPL) Extreme Ultraviolet (EUV) Lithography Imprint Lithography Photoresists for 193nm and Immersion Lithography Scatterometry Microlithography: Science and Technology, Second Edition authoritatively covers the physics, chemistry, optics, metrology tools and techniques, resist processing and materials, and fabrication methods involved in the latest generations of microlithography such as immersion lithography and extreme ultraviolet (EUV) lithography. It also looks ahead to the possible future systems and technologies that will bring the next generations to fruition. Loaded with illustrations, equations, tables, and time-saving references to the most current literature, this book is the most comprehensive and reliable source for anyone, from student to seasoned professional, looking to achieve robust, accurate, and cost-effective microlithography processes and systems.

Book EUV Sources for Lithography

Download or read book EUV Sources for Lithography written by Vivek Bakshi and published by SPIE Press. This book was released on 2006 with total page 1104 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive volume, edited by a senior technical staff member at SEMATECH, is the authoritative reference book on EUV source technology. The volume contains 38 chapters contributed by leading researchers and suppliers in the EUV source field. Topics range from a state-of-the-art overview and in-depth explanation of EUV source requirements, to fundamental atomic data and theoretical models of EUV sources based on discharge-produced plasmas (DPP) and laser-produced plasmas, to a description of prominent DPP and LPP designs and other technologies for producing EUV radiation. Additional topics include EUV source metrology and components (collectors, electrodes), debris mitigation, and mechanisms of component erosion in EUV sources. The volume is intended to meet the needs of both practitioners of the technology and readers seeking an introduction to the subject.

Book Photobiology

    Book Details:
  • Author : Lars Olof Björn
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 9401005818
  • Pages : 452 pages

Download or read book Photobiology written by Lars Olof Björn and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photobiology - the science of light and life - begins with basic principles and the physics of light and continues with general photobiological research methods, such as generation of light, measurement of light, and action spectroscopy. In an interdisciplinary way, it then treats how organisms tune their pigments and structures to the wavelength components of light, and how light is registered by organisms. Then follow various examples of photobiological phenomena: the design of the compound eye in relation to the properties of light, phototoxicity, photobiology of the human skin and of vitamin D, photomorphogenesis, photoperiodism, the setting of the biological clock by light, and bioluminescence. A final chapter is devoted to teaching experiments and demonstrations in photobiology. This book encompasses topics from a diverse array of traditional disciplines: physics, biochemistry, medicine, zoology, botany, microbiology, etc., and makes different aspects of photobiology accessible to experts in all these areas as well as to the novice.