Download or read book Estimation theory with applications to communications and control written by Andrew P. Sage and published by . This book was released on 1974 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Estimation Theory with Applications to Communications and Control written by Andrew P. Sage and published by . This book was released on 1979 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Lessons in Estimation Theory for Signal Processing Communications and Control written by Jerry M. Mendel and published by Pearson Education. This book was released on 1995-03-14 with total page 891 pages. Available in PDF, EPUB and Kindle. Book excerpt: Estimation theory is a product of need and technology. As a result, it is an integral part of many branches of science and engineering. To help readers differentiate among the rich collection of estimation methods and algorithms, this book describes in detail many of the important estimation methods and shows how they are interrelated. Written as a collection of lessons, this book introduces readers o the general field of estimation theory and includes abundant supplementary material.
Download or read book Constrained Control and Estimation written by Graham Goodwin and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent developments in constrained control and estimation have created a need for this comprehensive introduction to the underlying fundamental principles. These advances have significantly broadened the realm of application of constrained control. - Using the principal tools of prediction and optimisation, examples of how to deal with constraints are given, placing emphasis on model predictive control. - New results combine a number of methods in a unique way, enabling you to build on your background in estimation theory, linear control, stability theory and state-space methods. - Companion web site, continually updated by the authors. Easy to read and at the same time containing a high level of technical detail, this self-contained, new approach to methods for constrained control in design will give you a full understanding of the subject.
Download or read book An Introduction to Signal Detection and Estimation written by H. Vincent Poor and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 558 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to introduce the reader to the basic theory of signal detection and estimation. It is assumed that the reader has a working knowledge of applied probabil ity and random processes such as that taught in a typical first-semester graduate engineering course on these subjects. This material is covered, for example, in the book by Wong (1983) in this series. More advanced concepts in these areas are introduced where needed, primarily in Chapters VI and VII, where continuous-time problems are treated. This book is adapted from a one-semester, second-tier graduate course taught at the University of Illinois. However, this material can also be used for a shorter or first-tier course by restricting coverage to Chapters I through V, which for the most part can be read with a background of only the basics of applied probability, including random vectors and conditional expectations. Sufficient background for the latter option is given for exam pIe in the book by Thomas (1986), also in this series.
Download or read book Detection and Estimation for Communication and Radar Systems written by Kung Yao and published by Cambridge University Press. This book was released on 2013-01-17 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering the fundamentals of detection and estimation theory, this systematic guide describes statistical tools that can be used to analyze, design, implement and optimize real-world systems. Detailed derivations of the various statistical methods are provided, ensuring a deeper understanding of the basics. Packed with practical insights, it uses extensive examples from communication, telecommunication and radar engineering to illustrate how theoretical results are derived and applied in practice. A unique blend of theory and applications and over 80 analytical and computational end-of-chapter problems make this an ideal resource for both graduate students and professional engineers.
Download or read book Bayesian Signal Processing written by James V. Candy and published by John Wiley & Sons. This book was released on 2016-07-12 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the Bayesian approach to statistical signal processing for a variety of useful model sets This book aims to give readers a unified Bayesian treatment starting from the basics (Baye’s rule) to the more advanced (Monte Carlo sampling), evolving to the next-generation model-based techniques (sequential Monte Carlo sampling). This next edition incorporates a new chapter on “Sequential Bayesian Detection,” a new section on “Ensemble Kalman Filters” as well as an expansion of Case Studies that detail Bayesian solutions for a variety of applications. These studies illustrate Bayesian approaches to real-world problems incorporating detailed particle filter designs, adaptive particle filters and sequential Bayesian detectors. In addition to these major developments a variety of sections are expanded to “fill-in-the gaps” of the first edition. Here metrics for particle filter (PF) designs with emphasis on classical “sanity testing” lead to ensemble techniques as a basic requirement for performance analysis. The expansion of information theory metrics and their application to PF designs is fully developed and applied. These expansions of the book have been updated to provide a more cohesive discussion of Bayesian processing with examples and applications enabling the comprehension of alternative approaches to solving estimation/detection problems. The second edition of Bayesian Signal Processing features: “Classical” Kalman filtering for linear, linearized, and nonlinear systems; “modern” unscented and ensemble Kalman filters: and the “next-generation” Bayesian particle filters Sequential Bayesian detection techniques incorporating model-based schemes for a variety of real-world problems Practical Bayesian processor designs including comprehensive methods of performance analysis ranging from simple sanity testing and ensemble techniques to sophisticated information metrics New case studies on adaptive particle filtering and sequential Bayesian detection are covered detailing more Bayesian approaches to applied problem solving MATLAB® notes at the end of each chapter help readers solve complex problems using readily available software commands and point out other software packages available Problem sets included to test readers’ knowledge and help them put their new skills into practice Bayesian Signal Processing, Second Edition is written for all students, scientists, and engineers who investigate and apply signal processing to their everyday problems.
Download or read book Detection and Estimation for Communication and Radar Systems written by Kung Yao and published by Cambridge University Press. This book was released on 2013-01-17 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic guide to detection and estimation theory and their applications in the design, implementation and optimization of real-world systems.
Download or read book Fundamentals of Stochastic Signals Systems and Estimation Theory with Worked Examples written by Branko Kovačević and published by . This book was released on 2008 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Linear Estimation written by Thomas Kailath and published by Pearson. This book was released on 2000 with total page 888 pages. Available in PDF, EPUB and Kindle. Book excerpt: This original work offers the most comprehensive and up-to-date treatment of the important subject of optimal linear estimation, which is encountered in many areas of engineering such as communications, control, and signal processing, and also in several other fields, e.g., econometrics and statistics. The book not only highlights the most significant contributions to this field during the 20th century, including the works of Wiener and Kalman, but it does so in an original and novel manner that paves the way for further developments. This book contains a large collection of problems that complement it and are an important part of piece, in addition to numerous sections that offer interesting historical accounts and insights. The book also includes several results that appear in print for the first time. FEATURES/BENEFITS Takes a geometric point of view. Emphasis on the numerically favored array forms of many algorithms. Emphasis on equivalence and duality concepts for the solution of several related problems in adaptive filtering, estimation, and control. These features are generally absent in most prior treatments, ostensibly on the grounds that they are too abstract and complicated. It is the authors' hope that these misconceptions will be dispelled by the presentation herein, and that the fundamental simplicity and power of these ideas will be more widely recognized and exploited. Among other things, these features already yielded new insights and new results for linear and nonlinear problems in areas such as adaptive filtering, quadratic control, and estimation, including the recent Hà theories.
Download or read book Fundamentals of Signal Processing in Metric Spaces with Lattice Properties written by Andrey Popoff and published by CRC Press. This book was released on 2017-11-03 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exploring the interrelation between information theory and signal processing theory, the book contains a new algebraic approach to signal processing theory. Readers will learn this new approach to constructing the unified mathematical fundamentals of both information theory and signal processing theory in addition to new methods of evaluating quality indices of signal processing. The book discusses the methodology of synthesis and analysis of signal processing algorithms providing qualitative increase of signal processing efficiency under parametric and nonparametric prior uncertainty conditions. Examples are included throughout the book to further emphasize new material.
Download or read book Detection Estimation and Modulation Theory Part I written by Harry L. Van Trees and published by John Wiley & Sons. This book was released on 2013-04-15 with total page 1188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published in 1968, Harry Van Trees’s Detection, Estimation, and Modulation Theory, Part I is one of the great time-tested classics in the field of signal processing. Highly readable and practically organized, it is as imperative today for professionals, researchers, and students in optimum signal processing as it was over thirty years ago. The second edition is a thorough revision and expansion almost doubling the size of the first edition and accounting for the new developments thus making it again the most comprehensive and up-to-date treatment of the subject. With a wide range of applications such as radar, sonar, communications, seismology, biomedical engineering, and radar astronomy, among others, the important field of detection and estimation has rarely been given such expert treatment as it is here. Each chapter includes section summaries, realistic examples, and a large number of challenging problems that provide excellent study material. This volume which is Part I of a set of four volumes is the most important and widely used textbook and professional reference in the field.
Download or read book Model Based Signal Processing written by James V. Candy and published by John Wiley & Sons. This book was released on 2005-10-27 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique treatment of signal processing using a model-based perspective Signal processing is primarily aimed at extracting useful information, while rejecting the extraneous from noisy data. If signal levels are high, then basic techniques can be applied. However, low signal levels require using the underlying physics to correct the problem causing these low levels and extracting the desired information. Model-based signal processing incorporates the physical phenomena, measurements, and noise in the form of mathematical models to solve this problem. Not only does the approach enable signal processors to work directly in terms of the problem's physics, instrumentation, and uncertainties, but it provides far superior performance over the standard techniques. Model-based signal processing is both a modeler's as well as a signal processor's tool. Model-Based Signal Processing develops the model-based approach in a unified manner and follows it through the text in the algorithms, examples, applications, and case studies. The approach, coupled with the hierarchy of physics-based models that the author develops, including linear as well as nonlinear representations, makes it a unique contribution to the field of signal processing. The text includes parametric (e.g., autoregressive or all-pole), sinusoidal, wave-based, and state-space models as some of the model sets with its focus on how they may be used to solve signal processing problems. Special features are provided that assist readers in understanding the material and learning how to apply their new knowledge to solving real-life problems. * Unified treatment of well-known signal processing models including physics-based model sets * Simple applications demonstrate how the model-based approach works, while detailed case studies demonstrate problem solutions in their entirety from concept to model development, through simulation, application to real data, and detailed performance analysis * Summaries provided with each chapter ensure that readers understand the key points needed to move forward in the text as well as MATLAB(r) Notes that describe the key commands and toolboxes readily available to perform the algorithms discussed * References lead to more in-depth coverage of specialized topics * Problem sets test readers' knowledge and help them put their new skills into practice The author demonstrates how the basic idea of model-based signal processing is a highly effective and natural way to solve both basic as well as complex processing problems. Designed as a graduate-level text, this book is also essential reading for practicing signal-processing professionals and scientists, who will find the variety of case studies to be invaluable. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department
Download or read book Optimal and Robust Estimation written by Frank L. Lewis and published by CRC Press. This book was released on 2017-12-19 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: More than a decade ago, world-renowned control systems authority Frank L. Lewis introduced what would become a standard textbook on estimation, under the title Optimal Estimation, used in top universities throughout the world. The time has come for a new edition of this classic text, and Lewis enlisted the aid of two accomplished experts to bring the book completely up to date with the estimation methods driving today's high-performance systems. A Classic Revisited Optimal and Robust Estimation: With an Introduction to Stochastic Control Theory, Second Edition reflects new developments in estimation theory and design techniques. As the title suggests, the major feature of this edition is the inclusion of robust methods. Three new chapters cover the robust Kalman filter, H-infinity filtering, and H-infinity filtering of discrete-time systems. Modern Tools for Tomorrow's Engineers This text overflows with examples that highlight practical applications of the theory and concepts. Design algorithms appear conveniently in tables, allowing students quick reference, easy implementation into software, and intuitive comparisons for selecting the best algorithm for a given application. In addition, downloadable MATLAB® code allows students to gain hands-on experience with industry-standard software tools for a wide variety of applications. This cutting-edge and highly interactive text makes teaching, and learning, estimation methods easier and more modern than ever.
Download or read book Applied State Estimation and Association written by Chaw-Bing Chang and published by MIT Press. This book was released on 2016-07-08 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous introduction to the theory and applications of state estimation and association, an important area in aerospace, electronics, and defense industries. Applied state estimation and association is an important area for practicing engineers in aerospace, electronics, and defense industries, used in such tasks as signal processing, tracking, and navigation. This book offers a rigorous introduction to both theory and application of state estimation and association. It takes a unified approach to problem formulation and solution development that helps students and junior engineers build a sound theoretical foundation for their work and develop skills and tools for practical applications. Chapters 1 through 6 focus on solving the problem of estimation with a single sensor observing a single object, and cover such topics as parameter estimation, state estimation for linear and nonlinear systems, and multiple model estimation algorithms. Chapters 7 through 10 expand the discussion to consider multiple sensors and multiple objects. The book can be used in a first-year graduate course in control or system engineering or as a reference for professionals. Each chapter ends with problems that will help readers to develop derivation skills that can be applied to new problems and to build computer models that offer a useful set of tools for problem solving. Readers must be familiar with state-variable representation of systems and basic probability theory including random and stochastic processes.
Download or read book Stable Adaptive Control and Estimation for Nonlinear Systems written by Jeffrey T. Spooner and published by John Wiley & Sons. This book was released on 2004-04-07 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thema dieses Buches ist die Anwendung neuronaler Netze und Fuzzy-Logic-Methoden zur Identifikation und Steuerung nichtlinear-dynamischer Systeme. Dabei werden fortgeschrittene Konzepte der herkömmlichen Steuerungstheorie mit den intuitiven Eigenschaften intelligenter Systeme kombiniert, um praxisrelevante Steuerungsaufgaben zu lösen. Die Autoren bieten viel Hintergrundmaterial; ausgearbeitete Beispiele und Übungsaufgaben helfen Studenten und Praktikern beim Vertiefen des Stoffes. Lösungen zu den Aufgaben sowie MATLAB-Codebeispiele sind ebenfalls enthalten.
Download or read book Fundamentals of Statistical Signal Processing written by Steven M. Kay and published by Pearson Education. This book was released on 2013 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: "For those involved in the design and implementation of signal processing algorithms, this book strikes a balance between highly theoretical expositions and the more practical treatments, covering only those approaches necessary for obtaining an optimal estimator and analyzing its performance. Author Steven M. Kay discusses classical estimation followed by Bayesian estimation, and illustrates the theory with numerous pedagogical and real-world examples."--Cover, volume 1.