EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Networked Nonlinear Stochastic Time Varying Systems

Download or read book Networked Nonlinear Stochastic Time Varying Systems written by Hongli Dong and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book copes with the filter design, fault estimation and reliable control problems for different classes of nonlinear stochastic time-varying systems with network-enhanced complexities (e.g. state-multiplicative noises, stochastic nonlinearities, stochastic inner couplings, channel fadings, measurement quantizations etc).

Book Discrete time Stochastic Systems

Download or read book Discrete time Stochastic Systems written by Torsten Söderström and published by Springer Science & Business Media. This book was released on 2002-07-26 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive introduction to the estimation and control of dynamic stochastic systems provides complete derivations of key results. The second edition includes improved and updated material, and a new presentation of polynomial control and new derivation of linear-quadratic-Gaussian control.

Book Nonlinear Dynamics and Statistics

Download or read book Nonlinear Dynamics and Statistics written by Alistair I. Mees and published by Springer Science & Business Media. This book was released on 2001-01-25 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the state of the art in nonlinear dynamical reconstruction theory. The chapters are based upon a workshop held at the Isaac Newton Institute, Cambridge University, UK, in late 1998. The book's chapters present theory and methods topics by leading researchers in applied and theoretical nonlinear dynamics, statistics, probability, and systems theory. Features and topics: * disentangling uncertainty and error: the predictability of nonlinear systems * achieving good nonlinear models * delay reconstructions: dynamics vs. statistics * introduction to Monte Carlo Methods for Bayesian Data Analysis * latest results in extracting dynamical behavior via Markov Models * data compression, dynamics and stationarity Professionals, researchers, and advanced graduates in nonlinear dynamics, probability, optimization, and systems theory will find the book a useful resource and guide to current developments in the subject.

Book Bilinear Stochastic Models and Related Problems of Nonlinear Time Series Analysis

Download or read book Bilinear Stochastic Models and Related Problems of Nonlinear Time Series Analysis written by György Terdik and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: The object of the present work is a systematic statistical analysis of bilinear processes in the frequency domain. The first two chapters are devoted to the basic theory of nonlinear functions of stationary Gaussian processes, Hermite polynomials, cumulants and higher order spectra, multiple Wiener-Itô integrals and finally chaotic Wiener-Itô spectral representation of subordinated processes. There are two chapters for general nonlinear time series problems.

Book Uncertainty Modeling in Vibration  Control and Fuzzy Analysis of Structural Systems

Download or read book Uncertainty Modeling in Vibration Control and Fuzzy Analysis of Structural Systems written by Bilal M. Ayyub and published by World Scientific. This book was released on 1997 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an overview of the current state of uncertainty modeling in vibration, control, and fuzzy analysis of structural and mechanical systems. It is a coherent compendium written by leading experts and offers the reader a sampling of exciting research areas in several fast-growing branches in this field. Uncertainty modeling and analysis are becoming an integral part of system definition and modeling in many fields. The book consists of ten chapters that report the work of researchers, scientists and engineers on theoretical developments and diversified applications in engineering systems. They deal with modeling for vibration, control, and fuzzy analysis of structural and mechanical systems under uncertain conditions. The book designed for readers who are familiar with the fundamentals and wish to study a particular topic or use the book as an authoritative reference. It gives readers a sophisticated toolbox for tackling modeling problems in mechanical and structural systems in real-world situations. The book is part of a series on Stability, Vibration and Control of Structures, and provides vital information in these areas.

Book Optimal State Estimation

Download or read book Optimal State Estimation written by Dan Simon and published by John Wiley & Sons. This book was released on 2006-06-19 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: A bottom-up approach that enables readers to master and apply the latest techniques in state estimation This book offers the best mathematical approaches to estimating the state of a general system. The author presents state estimation theory clearly and rigorously, providing the right amount of advanced material, recent research results, and references to enable the reader to apply state estimation techniques confidently across a variety of fields in science and engineering. While there are other textbooks that treat state estimation, this one offers special features and a unique perspective and pedagogical approach that speed learning: * Straightforward, bottom-up approach begins with basic concepts and then builds step by step to more advanced topics for a clear understanding of state estimation * Simple examples and problems that require only paper and pen to solve lead to an intuitive understanding of how theory works in practice * MATLAB(r)-based source code that corresponds to examples in the book, available on the author's Web site, enables readers to recreate results and experiment with other simulation setups and parameters Armed with a solid foundation in the basics, readers are presented with a careful treatment of advanced topics, including unscented filtering, high order nonlinear filtering, particle filtering, constrained state estimation, reduced order filtering, robust Kalman filtering, and mixed Kalman/H? filtering. Problems at the end of each chapter include both written exercises and computer exercises. Written exercises focus on improving the reader's understanding of theory and key concepts, whereas computer exercises help readers apply theory to problems similar to ones they are likely to encounter in industry. With its expert blend of theory and practice, coupled with its presentation of recent research results, Optimal State Estimation is strongly recommended for undergraduate and graduate-level courses in optimal control and state estimation theory. It also serves as a reference for engineers and science professionals across a wide array of industries.

Book Stochastic Systems

Download or read book Stochastic Systems written by P. R. Kumar and published by SIAM. This book was released on 2015-12-15 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its origins in the 1940s, the subject of decision making under uncertainty has grown into a diversified area with application in several branches of engineering and in those areas of the social sciences concerned with policy analysis and prescription. These approaches required a computing capacity too expensive for the time, until the ability to collect and process huge quantities of data engendered an explosion of work in the area. This book provides succinct and rigorous treatment of the foundations of stochastic control; a unified approach to filtering, estimation, prediction, and stochastic and adaptive control; and the conceptual framework necessary to understand current trends in stochastic control, data mining, machine learning, and robotics.

Book Applied Stochastic Differential Equations

Download or read book Applied Stochastic Differential Equations written by Simo Särkkä and published by Cambridge University Press. This book was released on 2019-05-02 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1991 with total page 1460 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

Book Introduction to Stochastic Search and Optimization

Download or read book Introduction to Stochastic Search and Optimization written by James C. Spall and published by John Wiley & Sons. This book was released on 2005-03-11 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: * Unique in its survey of the range of topics. * Contains a strong, interdisciplinary format that will appeal to both students and researchers. * Features exercises and web links to software and data sets.

Book Topics In Nonlinear Time Series Analysis  With Implications For Eeg Analysis

Download or read book Topics In Nonlinear Time Series Analysis With Implications For Eeg Analysis written by Andreas Galka and published by World Scientific. This book was released on 2000-02-18 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough review of a class of powerful algorithms for the numerical analysis of complex time series data which were obtained from dynamical systems. These algorithms are based on the concept of state space representations of the underlying dynamics, as introduced by nonlinear dynamics. In particular, current algorithms for state space reconstruction, correlation dimension estimation, testing for determinism and surrogate data testing are presented — algorithms which have been playing a central role in the investigation of deterministic chaos and related phenomena since 1980. Special emphasis is given to the much-disputed issue whether these algorithms can be successfully employed for the analysis of the human electroencephalogram.

Book Nonlinear Stochastic Systems with Network Induced Phenomena

Download or read book Nonlinear Stochastic Systems with Network Induced Phenomena written by Jun Hu and published by Springer. This book was released on 2014-07-21 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph introduces methods for handling filtering and control problems in nonlinear stochastic systems arising from network-induced phenomena consequent on limited communication capacity. Such phenomena include communication delay, packet dropout, signal quantization or saturation, randomly occurring nonlinearities and randomly occurring uncertainties. The text is self-contained, beginning with an introduction to nonlinear stochastic systems, network-induced phenomena and filtering and control, moving through a collection of the latest research results which focuses on the three aspects of: · the state-of-the-art of nonlinear filtering and control; · recent advances in recursive filtering and sliding mode control; and · their potential for application in networked control systems, and concluding with some ideas for future research work. New concepts such as the randomly occurring uncertainty and the probability-constrained performance index are proposed to make the network models as realistic as possible. The power of combinations of such recent tools as the completing-the-square and sums-of-squares techniques, Hamilton‒Jacobi‒Isaacs matrix inequalities, difference linear matrix inequalities and parameter-dependent matrix inequalities is exploited in treating the mathematical and computational challenges arising from nonlinearity and stochasticity. Nonlinear Stochastic Systems with Network-Induced Phenomena establishes a unified framework of control and filtering which will be of value to academic researchers in bringing structure to problems associated with an important class of networked system and offering new means of solving them. The significance of the new concepts, models and methods presented for practical control engineering and signal processing will also make it a valuable reference for engineers dealing with nonlinear control and filtering problems.

Book Information Theory and Stochastics for Multiscale Nonlinear Systems

Download or read book Information Theory and Stochastics for Multiscale Nonlinear Systems written by Andrew Majda and published by American Mathematical Soc.. This book was released on 2005 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces mathematicians to the fascinating mathematical interplay between ideas from stochastics and information theory and practical issues in studying complex multiscale nonlinear systems. It emphasizes the serendipity between modern applied mathematics and applications where rigorous analysis, the development of qualitative and/or asymptotic models, and numerical modeling all interact to explain complex phenomena. After a brief introduction to the emerging issues in multiscale modeling, the book has three main chapters. The first chapter is an introduction to information theory with novel applications to statistical mechanics, predictability, and Jupiter's Red Spot for geophysical flows. The second chapter discusses new mathematical issues regarding fluctuation-dissipation theorems for complex nonlinear systems including information flow, various approximations, and illustrates applications to various mathematical models. The third chapter discusses stochastic modeling of complex nonlinear systems. After a general discussion, a new elementary model, motivated by issues in climate dynamics, is utilized to develop a self-contained example of stochastic mode reduction. Based on A. Majda's Aisenstadt lectures at the University of Montreal, the book is appropriate for both pure and applied mathematics graduate students, postdocs and faculty, as well as interested researchers in other scientific disciplines. No background in geophysical flows is required. About the authors: Andrew Majda is a member of the National Academy of Sciences and has received numerous honors and awards, including the National Academy of Science Prize in Applied Mathematics, the John von Neumann Prize of the Society of Industrial and Applied Mathematics, the Gibbs Prize of the American Mathematical Society, and the Medal of the College de France. In the past several years at the Courant Institute, Majda and a multi-disciplinary faculty have created the Center for Atmosphere Ocean Science to promote cross-disciplinary research with modern applied mathematics in climate modeling and prediction. R.V. Abramov is a young researcher; he received his PhD in 2002. M. J. Grote received his Ph.D. under Joseph B. Keller at Stanford University in 1995.

Book Stochastic Processes and Filtering Theory

Download or read book Stochastic Processes and Filtering Theory written by Andrew H. Jazwinski and published by Courier Corporation. This book was released on 2013-04-15 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unified treatment of linear and nonlinear filtering theory presents material previously available only in journals, and in terms accessible to engineering students. Its sole prerequisites are advanced calculus, the theory of ordinary differential equations, and matrix analysis. Although theory is emphasized, the text discusses numerous practical applications as well. Taking the state-space approach to filtering, this text models dynamical systems by finite-dimensional Markov processes, outputs of stochastic difference, and differential equations. Starting with background material on probability theory and stochastic processes, the author introduces and defines the problems of filtering, prediction, and smoothing. He presents the mathematical solutions to nonlinear filtering problems, and he specializes the nonlinear theory to linear problems. The final chapters deal with applications, addressing the development of approximate nonlinear filters, and presenting a critical analysis of their performance.

Book Nonlinear Time Series Analysis

Download or read book Nonlinear Time Series Analysis written by Ruey S. Tsay and published by John Wiley & Sons. This book was released on 2018-09-13 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive resource that draws a balance between theory and applications of nonlinear time series analysis Nonlinear Time Series Analysis offers an important guide to both parametric and nonparametric methods, nonlinear state-space models, and Bayesian as well as classical approaches to nonlinear time series analysis. The authors—noted experts in the field—explore the advantages and limitations of the nonlinear models and methods and review the improvements upon linear time series models. The need for this book is based on the recent developments in nonlinear time series analysis, statistical learning, dynamic systems and advanced computational methods. Parametric and nonparametric methods and nonlinear and non-Gaussian state space models provide a much wider range of tools for time series analysis. In addition, advances in computing and data collection have made available large data sets and high-frequency data. These new data make it not only feasible, but also necessary to take into consideration the nonlinearity embedded in most real-world time series. This vital guide: • Offers research developed by leading scholars of time series analysis • Presents R commands making it possible to reproduce all the analyses included in the text • Contains real-world examples throughout the book • Recommends exercises to test understanding of material presented • Includes an instructor solutions manual and companion website Written for students, researchers, and practitioners who are interested in exploring nonlinearity in time series, Nonlinear Time Series Analysis offers a comprehensive text that explores the advantages and limitations of the nonlinear models and methods and demonstrates the improvements upon linear time series models.

Book Linear Stochastic Control Systems

Download or read book Linear Stochastic Control Systems written by Goong Chen and published by CRC Press. This book was released on 1995-07-12 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear Stochastic Control Systems presents a thorough description of the mathematical theory and fundamental principles of linear stochastic control systems. Both continuous-time and discrete-time systems are thoroughly covered. Reviews of the modern probability and random processes theories and the Itô stochastic differential equations are provided. Discrete-time stochastic systems theory, optimal estimation and Kalman filtering, and optimal stochastic control theory are studied in detail. A modern treatment of these same topics for continuous-time stochastic control systems is included. The text is written in an easy-to-understand style, and the reader needs only to have a background of elementary real analysis and linear deterministic systems theory to comprehend the subject matter. This graduate textbook is also suitable for self-study, professional training, and as a handy research reference. Linear Stochastic Control Systems is self-contained and provides a step-by-step development of the theory, with many illustrative examples, exercises, and engineering applications.

Book Uncertainty and Forecasting of Water Quality

Download or read book Uncertainty and Forecasting of Water Quality written by M.B. Beck and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the International Institute for Applied Systems Analysis began its study of water quality modeling and management in 1977, it has been interested in the relations between uncertainty and the problems of model calibration and prediction. The work has focused on the theme of modeling poorly defined environmental systems, a principal topic of the effort devoted to environmental quality control and management. Accounting for the effects of uncertainty was also of central concern to our two case studies of lake eutrophication management, one dealing with Lake Balaton in Hungary and the other with several Austrian lake systems. Thus, in November 1979 we held a meeting at Laxenburg to discuss recent method ological developments in addressing problems associated with uncertainty and forecasting of water quality. This book is based on the proceedings of that meeting. The last few years have seen an increase in awareness of the issue of uncertainty in water quality and ecological modeling. This book is relevant not only to contemporary issues but also to those of the future. A lack of field data will not always be the dominant problem for water quality modeling and management; more sophisticated measuring techniques and more comprehensive monitoring networks will come to be more widely applied. Rather, the important problems of the future are much more likely to emerge from the enhanced facility of data processing and to concern the meaningful interpretation, assimilation., and use of the information thus obtained.