EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Essential Semiconductor Laser Device Physics

Download or read book Essential Semiconductor Laser Device Physics written by A F J Levi and published by . This book was released on 2024-06-10 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Essential Semiconductor Laser Device Physics

Download or read book Essential Semiconductor Laser Device Physics written by A. F. J. Leviu and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The invention of the semiconductor laser along with silica glass fiber has enabled an incredible revolution in global communication infrastructure of direct benefit to all. Development of devices and system concepts that exploit the same fundamental light-matter interaction continues. Researchers and technologists are pursuing a broad range of emerging applications, everything from automobile collision avoidance to secure quantum key distribution. This book sets out to summarize key aspects of semiconductor laser device physics and principles of laser operation. Supplementary MATLAB® materials are available for all figures generated numerically.

Book Essential Semiconductor Laser Physics

Download or read book Essential Semiconductor Laser Physics written by A F J Levi and published by Morgan & Claypool Publishers. This book was released on 2018-07-18 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: The invention of the semiconductor laser along with silica glass fiber has enabled an incredible revolution in global communication infrastructure of direct benefit to all. Development of devices and system concepts that exploit the same fundamental light-matter interaction continues. Researchers and technologists are pursuing a broad range of emerging applications, everything from automobile collision avoidance to secure quantum key distribution. This book sets out to summarize key aspects of semiconductor laser device physics and principles of laser operation. It provides a convenient reference and essential knowledge to be understood before exploring more sophisticated device concepts. The contents serve as a foundation for scientists and engineers, without the need to invest in specialized detailed study. Supplementary material in the form of MATLAB is available for numerically generated figures.

Book Physics of Semiconductor Lasers

Download or read book Physics of Semiconductor Lasers written by B. Mroziewicz and published by Elsevier. This book was released on 2017-01-31 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written for readers who have some background in solid state physics but do not necessarily possess any knowledge of semiconductor lasers, this book provides a comprehensive and concise account of fundamental semiconductor laser physics, technology and properties. The principles of operation of these lasers are therefore discussed in detail with the interrelations between their design and optical, electrical and thermal properties. The relative merits of a large number of laser structures and their parameters are described to acquaint the reader with the various aspects of the semiconductor lasers and the trends in their development.

Book Semiconductor Lasers I

    Book Details:
  • Author : Eli Kapon
  • Publisher : Academic Press
  • Release : 1999-01-12
  • ISBN : 0080540929
  • Pages : 467 pages

Download or read book Semiconductor Lasers I written by Eli Kapon and published by Academic Press. This book was released on 1999-01-12 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the device physics of semiconductor lasers in five chapters written by recognized experts in this field. The volume begins by introducing the basic mechanisms of optical gain in semiconductors and the role of quantum confinement in modern quantum well diode lasers. Subsequent chapters treat the effects of built-in strain, one of the important recent advances in the technology of these lasers, and the physical mechanisms underlying the dynamics and high speed modulation of these devices. The book concludes with chapters addressing the control of photon states in squeezed-light and microcavity structures, and electron states in low dimensional quantum wire and quantum dot lasers. The book offers useful information for both readers unfamiliar with semiconductor lasers, through the introductory parts of each chapter, as well as a state-of-the-art discussion of some of the most advanced semiconductor laser structures, intended for readers engaged in research in this field. This book may also serve as an introduction for the companion volume, Semiconductor Lasers II: Materials and Structures, which presents further details on the different material systems and laser structures used for achieving specific diode laser performance features. - Introduces the reader to the basics of semiconductor lasers - Covers the fundamentals of lasing in semiconductors, including quantum confined and microcavity structures - Beneficial to readers interested in the more general aspects of semiconductor physics and optoelectronic devices, such as quantum confined heterostructures and integrated optics - Each chapter contains a thorough introduction to the topic geared toward the non-expert, followed by an in-depth discussion of current technology and future trends - Useful for professionals engaged in research and development - Contains numerous schematic and data-containing illustrations

Book Semiconductor Laser Fundamentals

Download or read book Semiconductor Laser Fundamentals written by Toshiaki Suhara and published by CRC Press. This book was released on 2004-03-16 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ranging from fundamental theoretical concepts to advanced device technologies, this reference/text explores the engineering, characteristics, and performance of specific semiconductor lasers. It defines key principles in electromagnetics, optoelectronics, and laser implementation for novel applications in optical communications, storage, processing, measurement, and sensing. This text prepares students for advanced experimental and theoretical research in semiconductor laser technology and provides the only comprehensive, systematic, and concise description of semiconductor lasers available for an understanding of the physics and parameters of laser operation and function.

Book Semiconductor Laser Fundamentals

Download or read book Semiconductor Laser Fundamentals written by Weng W. Chow and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: This in-depth title discusses the underlying physics and operational principles of semiconductor lasers. It analyzes the optical and electronic properties of the semiconductor medium in detail, including quantum confinement and gain-engineering effects. The text also includes recent developments in blue-emitting semiconductor lasers.

Book Semiconductor Laser Engineering  Reliability and Diagnostics

Download or read book Semiconductor Laser Engineering Reliability and Diagnostics written by Peter W. Epperlein and published by John Wiley & Sons. This book was released on 2013-01-25 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference book provides a fully integrated novel approach to the development of high-power, single-transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering, reliability engineering and device diagnostics in the same book, and thus closes the gap in the current book literature. Diode laser fundamentals are discussed, followed by an elaborate discussion of problem-oriented design guidelines and techniques, and by a systematic treatment of the origins of laser degradation and a thorough exploration of the engineering means to enhance the optical strength of the laser. Stability criteria of critical laser characteristics and key laser robustness factors are discussed along with clear design considerations in the context of reliability engineering approaches and models, and typical programs for reliability tests and laser product qualifications. Novel, advanced diagnostic methods are reviewed to discuss, for the first time in detail in book literature, performance- and reliability-impacting factors such as temperature, stress and material instabilities. Further key features include: practical design guidelines that consider also reliability related effects, key laser robustness factors, basic laser fabrication and packaging issues; detailed discussion of diagnostic investigations of diode lasers, the fundamentals of the applied approaches and techniques, many of them pioneered by the author to be fit-for-purpose and novel in the application; systematic insight into laser degradation modes such as catastrophic optical damage, and a wide range of technologies to increase the optical strength of diode lasers; coverage of basic concepts and techniques of laser reliability engineering with details on a standard commercial high power laser reliability test program. Semiconductor Laser Engineering, Reliability and Diagnostics reflects the extensive expertise of the author in the diode laser field both as a top scientific researcher as well as a key developer of high-power highly reliable devices. With invaluable practical advice, this new reference book is suited to practising researchers in diode laser technologies, and to postgraduate engineering students.

Book Fundamentals of Semiconductor Lasers

Download or read book Fundamentals of Semiconductor Lasers written by Takahiro Numai and published by Springer. This book was released on 2006-05-10 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: The detailed and comprehensive presentation is unique in that it encourages the reader to consider different semiconductor lasers from different angles. Emphasis is placed on recognizing common concepts such operating principles and structure, and solving problems based on individual situations. The treatment is enhanced by an historical account of advances in semiconductor lasers over the years, discussing both those ideas that have persisted over the years and those that have faded out.

Book Semiconductor Disk Lasers

    Book Details:
  • Author : Oleg G. Okhotnikov
  • Publisher : John Wiley & Sons
  • Release : 2010-03-30
  • ISBN : 9783527630400
  • Pages : 330 pages

Download or read book Semiconductor Disk Lasers written by Oleg G. Okhotnikov and published by John Wiley & Sons. This book was released on 2010-03-30 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This timely publication presents a review of the most recent developments in the field of Semiconductor Disk Lasers. Covering a wide range of key topics, such as operating principles, thermal management, nonlinear frequency conversion, semiconductor materials, short pulse generation, electrical pumping, and laser applications, the book provides readers with a comprehensive account of the fundamentals and latest advances in this rich and diverse field. In so doing, it brings together contributions from world experts at major collaborative research centers in Europe and the USA. Each chapter includes a tutorial style introduction to the selected topic suitable for postgraduate students and scientists with a basic background in optics - making it of interest to a wide range of scientists, researchers, engineers and physicists working and interested in this rapidly developing field. It will also serve as additional reading for students in the field.

Book Physics of Semiconductor Laser Devices

Download or read book Physics of Semiconductor Laser Devices written by George Horace Brooke Thompson and published by John Wiley & Sons. This book was released on 1980 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modern Semiconductor Device Physics

Download or read book Modern Semiconductor Device Physics written by S. M. Sze and published by Wiley-Interscience. This book was released on 1998 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: An in-depth, up-to-date presentation of the physics and operational principles of all modern semiconductor devices The companion volume to Dr. Sze's classic Physics of Semiconductor Devices, Modern Semiconductor Device Physics covers all the significant advances in the field over the past decade. To provide the most authoritative, state-of-the-art information on this rapidly developing technology, Dr. Sze has gathered the contributions of world-renowned experts in each area. Principal topics include bipolar transistors, compound-semiconductor field-effect-transistors, MOSFET and related devices, power devices, quantum-effect and hot-electron devices, active microwave diodes, high-speed photonic devices, and solar cells. Supported by hundreds of illustrations and references and a problem set at the end of each chapter, Modern Semiconductor Device Physics is the essential text/reference for electrical engineers, physicists, material scientists, and graduate students actively working in microelectronics and related fields.

Book Physics and Properties of Narrow Gap Semiconductors

Download or read book Physics and Properties of Narrow Gap Semiconductors written by Junhao Chu and published by Springer Science & Business Media. This book was released on 2007-11-21 with total page 613 pages. Available in PDF, EPUB and Kindle. Book excerpt: Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. They often operate at the extremes of the rules of semiconductor science. This book offers clear descriptions of crystal growth and the fundamental structure and properties of these unique materials. Topics covered include band structure, optical and transport properties, and lattice vibrations and spectra. A thorough treatment of the properties of low-dimensional systems and their relation to infrared applications is provided.

Book Semiconductor Lasers

    Book Details:
  • Author : Junji Ohtsubo
  • Publisher : Springer
  • Release : 2017-05-03
  • ISBN : 3319561383
  • Pages : 679 pages

Download or read book Semiconductor Lasers written by Junji Ohtsubo and published by Springer. This book was released on 2017-05-03 with total page 679 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in semiconductor lasers are discussed, but also for example the method of self-mixing interferometry in quantum-cascade lasers, which is indispensable in practical applications. Further, this edition covers chaos synchronization between two lasers and the application to secure optical communications. Another new topic is the consistency and synchronization property of many coupled semiconductor lasers in connection with the analogy of the dynamics between synaptic neurons and chaotic semiconductor lasers, which are compatible nonlinear dynamic elements. In particular, zero-lag synchronization between distant neurons plays a crucial role for information processing in the brain. Lastly, the book presents an application of the consistency and synchronization property in chaotic semiconductor lasers, namely a type of neuro-inspired information processing referred to as reservoir computing.

Book Process Technology for Semiconductor Lasers

Download or read book Process Technology for Semiconductor Lasers written by Kenichi Iga and published by Springer Science & Business Media. This book was released on 2013-03-07 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: A description of the design principles, seen mainly from the fabrication point of view. Following a review of the historical development and of the materials used in lasing at short to long wavelengths, the book goes on to discuss the basic design principles for semiconductor-laser devices and the epitaxy for laser production. One entire chapter is devoted to the technology of liquid-phase epitaxy, while another treats vapor-phase and beam epitaxies. The whole is rounded off with mode-control techniques and an introduction to surface-emitting lasers.

Book Quantum Confined Laser Devices

Download or read book Quantum Confined Laser Devices written by Peter Blood and published by Oxford University Press. This book was released on 2015 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: The semiconductor laser, invented over 50 years ago, has had an enormous impact on the digital technologies that now dominate so many applications in business, commerce and the home. The laser is used in all types of optical fibre communication networks that enable the operation of the internet, e-mail, voice and skype transmission. Approximately one billion are produced each year for a market valued at around $5 billion. Nearly all semiconductor lasers now use extremely thin layers of light emitting materials (quantum well lasers). Increasingly smaller nanostructures are used in the form of quantum dots. The impact of the semiconductor laser is surprising in the light of the complexity of the physical processes that determine the operation of every device. This text takes the reader from the fundamental optical gain and carrier recombination processes in quantum wells and quantum dots, through descriptions of common device structures to an understanding of their operating characteristics. It has a consistent treatment of both quantum dot and quantum well structures taking full account of their dimensionality, which provides the reader with a complete account of contemporary quantum confined laser diodes. It includes plenty of illustrations from both model calculations and experimental observations. There are numerous exercises, many designed to give a feel for values of key parameters and experience obtaining quantitative results from equations. Some challenging concepts, previously the subject matter of research monographs, are treated here at this level for the first time. To request a copy of the Solutions Manual, visit http: //global.oup.com/uk/academic/physics/admin/solutions.

Book Lasers and Optoelectronics

Download or read book Lasers and Optoelectronics written by Anil K. Maini and published by John Wiley & Sons. This book was released on 2013-08-05 with total page 771 pages. Available in PDF, EPUB and Kindle. Book excerpt: With emphasis on the physical and engineering principles, this book provides a comprehensive and highly accessible treatment of modern lasers and optoelectronics. Divided into four parts, it explains laser fundamentals, types of lasers, laser electronics & optoelectronics, and laser applications, covering each of the topics in their entirety, from basic fundamentals to advanced concepts. Key features include: exploration of technological and application-related aspects of lasers and optoelectronics, detailing both existing and emerging applications in industry, medical diagnostics and therapeutics, scientific studies and Defence. simple explanation of the concepts and essential information on electronics and circuitry related to laser systems illustration of numerous solved and unsolved problems, practical examples, chapter summaries, self-evaluation exercises, and a comprehensive list of references for further reading This volume is a valuable design guide for R&D engineers and scientists engaged in design and development of lasers and optoelectronics systems, and technicians in their operation and maintenance. The tutorial approach serves as a useful reference for under-graduate and graduate students of lasers and optoelectronics, also PhD students in electronics, optoelectronics and physics.