EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Essays in Honor of Cheng Hsiao

Download or read book Essays in Honor of Cheng Hsiao written by Dek Terrell and published by Emerald Group Publishing. This book was released on 2020-04-15 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: Including contributions spanning a variety of theoretical and applied topics in econometrics, this volume of Advances in Econometrics is published in honour of Cheng Hsiao.

Book Causal Inference in Econometrics

Download or read book Causal Inference in Econometrics written by Van-Nam Huynh and published by Springer. This book was released on 2015-12-28 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the analysis of causal inference which is one of the most difficult tasks in data analysis: when two phenomena are observed to be related, it is often difficult to decide whether one of them causally influences the other one, or whether these two phenomena have a common cause. This analysis is the main focus of this volume. To get a good understanding of the causal inference, it is important to have models of economic phenomena which are as accurate as possible. Because of this need, this volume also contains papers that use non-traditional economic models, such as fuzzy models and models obtained by using neural networks and data mining techniques. It also contains papers that apply different econometric models to analyze real-life economic dependencies.

Book The Book of Why

    Book Details:
  • Author : Judea Pearl
  • Publisher : Basic Books
  • Release : 2018-05-15
  • ISBN : 0465097618
  • Pages : 432 pages

Download or read book The Book of Why written by Judea Pearl and published by Basic Books. This book was released on 2018-05-15 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Turing Award-winning computer scientist and statistician shows how understanding causality has revolutionized science and will revolutionize artificial intelligence "Correlation is not causation." This mantra, chanted by scientists for more than a century, has led to a virtual prohibition on causal talk. Today, that taboo is dead. The causal revolution, instigated by Judea Pearl and his colleagues, has cut through a century of confusion and established causality -- the study of cause and effect -- on a firm scientific basis. His work explains how we can know easy things, like whether it was rain or a sprinkler that made a sidewalk wet; and how to answer hard questions, like whether a drug cured an illness. Pearl's work enables us to know not just whether one thing causes another: it lets us explore the world that is and the worlds that could have been. It shows us the essence of human thought and key to artificial intelligence. Anyone who wants to understand either needs The Book of Why.

Book Behavioral Predictive Modeling in Economics

Download or read book Behavioral Predictive Modeling in Economics written by Songsak Sriboonchitta and published by Springer Nature. This book was released on 2020-08-05 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents both methodological papers on and examples of applying behavioral predictive models to specific economic problems, with a focus on how to take into account people's behavior when making economic predictions. This is an important issue, since traditional economic models assumed that people make wise economic decisions based on a detailed rational analysis of all the relevant aspects. However, in reality – as Nobel Prize-winning research has shown – people have a limited ability to process information and, as a result, their decisions are not always optimal. Discussing the need for prediction-oriented statistical techniques, since many statistical methods currently used in economics focus more on model fitting and do not always lead to good predictions, the book is a valuable resource for researchers and students interested in the latest results and challenges and for practitioners wanting to learn how to use state-of-the-art techniques.

Book Elements of Causal Inference

Download or read book Elements of Causal Inference written by Jonas Peters and published by MIT Press. This book was released on 2017-11-29 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning. The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem. The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.

Book Causal Inference in Statistics

Download or read book Causal Inference in Statistics written by Judea Pearl and published by John Wiley & Sons. This book was released on 2016-01-25 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: CAUSAL INFERENCE IN STATISTICS A Primer Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we cannot use data to answer questions as basic as "Does this treatment harm or help patients?" But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data. Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest. This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.

Book Quantitative Economics with R

Download or read book Quantitative Economics with R written by Vikram Dayal and published by Springer Nature. This book was released on 2020-02-03 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a contemporary treatment of quantitative economics, with a focus on data science. The book introduces the reader to R and RStudio, and uses expert Hadley Wickham’s tidyverse package for different parts of the data analysis workflow. After a gentle introduction to R code, the reader’s R skills are gradually honed, with the help of “your turn” exercises. At the heart of data science is data, and the book equips the reader to import and wrangle data, (including network data). Very early on, the reader will begin using the popular ggplot2 package for visualizing data, even making basic maps. The use of R in understanding functions, simulating difference equations, and carrying out matrix operations is also covered. The book uses Monte Carlo simulation to understand probability and statistical inference, and the bootstrap is introduced. Causal inference is illuminated using simulation, data graphs, and R code for applications with real economic examples, covering experiments, matching, regression discontinuity, difference-in-difference, and instrumental variables. The interplay of growth related data and models is presented, before the book introduces the reader to time series data analysis with graphs, simulation, and examples. Lastly, two computationally intensive methods—generalized additive models and random forests (an important and versatile machine learning method)—are introduced intuitively with applications. The book will be of great interest to economists—students, teachers, and researchers alike—who want to learn R. It will help economics students gain an intuitive appreciation of applied economics and enjoy engaging with the material actively, while also equipping them with key data science skills.

Book An Introduction to Causal Inference

Download or read book An Introduction to Causal Inference written by Judea Pearl and published by Createspace Independent Publishing Platform. This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both. The tools are demonstrated in the analyses of mediation, causes of effects, and probabilities of causation. -- p. 1.

Book Text as Data

    Book Details:
  • Author : Justin Grimmer
  • Publisher : Princeton University Press
  • Release : 2022-03-29
  • ISBN : 0691207550
  • Pages : 360 pages

Download or read book Text as Data written by Justin Grimmer and published by Princeton University Press. This book was released on 2022-03-29 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide for using computational text analysis to learn about the social world From social media posts and text messages to digital government documents and archives, researchers are bombarded with a deluge of text reflecting the social world. This textual data gives unprecedented insights into fundamental questions in the social sciences, humanities, and industry. Meanwhile new machine learning tools are rapidly transforming the way science and business are conducted. Text as Data shows how to combine new sources of data, machine learning tools, and social science research design to develop and evaluate new insights. Text as Data is organized around the core tasks in research projects using text—representation, discovery, measurement, prediction, and causal inference. The authors offer a sequential, iterative, and inductive approach to research design. Each research task is presented complete with real-world applications, example methods, and a distinct style of task-focused research. Bridging many divides—computer science and social science, the qualitative and the quantitative, and industry and academia—Text as Data is an ideal resource for anyone wanting to analyze large collections of text in an era when data is abundant and computation is cheap, but the enduring challenges of social science remain. Overview of how to use text as data Research design for a world of data deluge Examples from across the social sciences and industry

Book Causal Inference in Statistics  Social  and Biomedical Sciences

Download or read book Causal Inference in Statistics Social and Biomedical Sciences written by Guido W. Imbens and published by Cambridge University Press. This book was released on 2015-04-06 with total page 647 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents statistical methods for studying causal effects and discusses how readers can assess such effects in simple randomized experiments.

Book The Economics of Artificial Intelligence

Download or read book The Economics of Artificial Intelligence written by Ajay Agrawal and published by University of Chicago Press. This book was released on 2024-03-05 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.

Book Machine Learning and AI in Finance

Download or read book Machine Learning and AI in Finance written by German Creamer and published by Routledge. This book was released on 2021-04-05 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: The significant amount of information available in any field requires a systematic and analytical approach to select the most critical information and anticipate major events. During the last decade, the world has witnessed a rapid expansion of applications of artificial intelligence (AI) and machine learning (ML) algorithms to an increasingly broad range of financial markets and problems. Machine learning and AI algorithms facilitate this process understanding, modelling and forecasting the behaviour of the most relevant financial variables. The main contribution of this book is the presentation of new theoretical and applied AI perspectives to find solutions to unsolved finance questions. This volume proposes an optimal model for the volatility smile, for modelling high-frequency liquidity demand and supply and for the simulation of market microstructure features. Other new AI developments explored in this book includes building a universal model for a large number of stocks, developing predictive models based on the average price of the crowd, forecasting the stock price using the attention mechanism in a neural network, clustering multivariate time series into different market states, proposing a multivariate distance nonlinear causality test and filtering out false investment strategies with an unsupervised learning algorithm. Machine Learning and AI in Finance explores the most recent advances in the application of innovative machine learning and artificial intelligence models to predict financial time series, to simulate the structure of the financial markets, to explore nonlinear causality models, to test investment strategies and to price financial options. The chapters in this book were originally published as a special issue of the Quantitative Finance journal.

Book Econometrics

    Book Details:
  • Author : Bruce Hansen
  • Publisher : Princeton University Press
  • Release : 2022-06-28
  • ISBN : 0691236151
  • Pages : 1081 pages

Download or read book Econometrics written by Bruce Hansen and published by Princeton University Press. This book was released on 2022-06-28 with total page 1081 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most authoritative and up-to-date core econometrics textbook available Econometrics is the quantitative language of economic theory, analysis, and empirical work, and it has become a cornerstone of graduate economics programs. Econometrics provides graduate and PhD students with an essential introduction to this foundational subject in economics and serves as an invaluable reference for researchers and practitioners. This comprehensive textbook teaches fundamental concepts, emphasizes modern, real-world applications, and gives students an intuitive understanding of econometrics. Covers the full breadth of econometric theory and methods with mathematical rigor while emphasizing intuitive explanations that are accessible to students of all backgrounds Draws on integrated, research-level datasets, provided on an accompanying website Discusses linear econometrics, time series, panel data, nonparametric methods, nonlinear econometric models, and modern machine learning Features hundreds of exercises that enable students to learn by doing Includes in-depth appendices on matrix algebra and useful inequalities and a wealth of real-world examples Can serve as a core textbook for a first-year PhD course in econometrics and as a follow-up to Bruce E. Hansen’s Probability and Statistics for Economists

Book The Oxford Handbook of Professional Economic Ethics

Download or read book The Oxford Handbook of Professional Economic Ethics written by George F. DeMartino and published by Oxford University Press. This book was released on 2016-01-04 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: For over a century the economics profession has extended its reach to encompass policy formation and institutional design while largely ignoring the ethical challenges that attend the profession's influence over the lives of others. Economists have proven to be disinterested in ethics. Embracing emotivism, they often treat ethics a matter of mere preference. Moreover, economists tend to be hostile to professional economic ethics, which they incorrectly equate with a code of conduct that would be at best ineffectual and at worst disruptive to good economic practice. But good ethical reasoning is not reducible to mere tastes, and professional ethics is not reducible to a code. Instead, professional economic ethics refers to a new field of investigation-a tradition of sustained and lively inquiry into the irrepressible ethical entailments of academic and applied economic practice. The Oxford Handbook of Professional Economic Ethics explores a wide range of questions related to the nature of ethical economic practice and the content of professional economic ethics. It explores current thinking that has emerged in these areas while widening substantially the terrain of economic ethics. There has never been a volume that poses so directly and intensively the question of the need for and content of professional ethics for economics. The Handbook incorporates the work of leading scholars and practitioners, including academic economists from various theoretical traditions; applied economists, beyond academia, whose work has direct and immense social impact; and philosophers, professional ethicists, and others whose work has addressed the nature of "professionalism" and its implications for ethical practice.

Book Recent Advances and Future Directions in Causality  Prediction  and Specification Analysis

Download or read book Recent Advances and Future Directions in Causality Prediction and Specification Analysis written by Xiaohong Chen and published by Springer Science & Business Media. This book was released on 2012-08-01 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of articles that present the most recent cutting edge results on specification and estimation of economic models written by a number of the world’s foremost leaders in the fields of theoretical and methodological econometrics. Recent advances in asymptotic approximation theory, including the use of higher order asymptotics for things like estimator bias correction, and the use of various expansion and other theoretical tools for the development of bootstrap techniques designed for implementation when carrying out inference are at the forefront of theoretical development in the field of econometrics. One important feature of these advances in the theory of econometrics is that they are being seamlessly and almost immediately incorporated into the “empirical toolbox” that applied practitioners use when actually constructing models using data, for the purposes of both prediction and policy analysis and the more theoretically targeted chapters in the book will discuss these developments. Turning now to empirical methodology, chapters on prediction methodology will focus on macroeconomic and financial applications, such as the construction of diffusion index models for forecasting with very large numbers of variables, and the construction of data samples that result in optimal predictive accuracy tests when comparing alternative prediction models. Chapters carefully outline how applied practitioners can correctly implement the latest theoretical refinements in model specification in order to “build” the best models using large-scale and traditional datasets, making the book of interest to a broad readership of economists from theoretical econometricians to applied economic practitioners.

Book Handbook of Abductive Cognition

Download or read book Handbook of Abductive Cognition written by Lorenzo Magnani and published by Springer Nature. This book was released on 2023-03-31 with total page 1921 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Handbook offers the first comprehensive reference guide to the interdisciplinary field of abductive cognition, providing readers with extensive information on the process of reasoning to hypotheses in humans, animals, and in computational machines. It highlights the role of abduction in both theory practice: in generating and testing hypotheses and explanatory functions for various purposes and as an educational device. It merges logical, cognitive, epistemological and philosophical perspectives with more practical needs relating to the application of abduction across various disciplines and practices, such as in diagnosis, creative reasoning, scientific discovery, diagrammatic and ignorance-based cognition, and adversarial strategies. It also discusses the inferential role of models in hypothetical reasoning, abduction and creativity, including the process of development, implementation and manipulation for different scientific and technological purposes. Written by a group of internationally renowned experts in philosophy, logic, general epistemology, mathematics, cognitive, and computer science, as well as life sciences, engineering, architecture, and economics, the Handbook of Abductive Cognition offers a unique reference guide for readers approaching the process of reasoning to hypotheses from different perspectives and for various theoretical and practical purposes. Numerous diagrams, schemes and other visual representations are included to promote a better understanding of the relevant concepts and to make concepts highly accessible to an audience of scholars and students with different scientific backgrounds.

Book All of Statistics

    Book Details:
  • Author : Larry Wasserman
  • Publisher : Springer Science & Business Media
  • Release : 2013-12-11
  • ISBN : 0387217363
  • Pages : 446 pages

Download or read book All of Statistics written by Larry Wasserman and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.