EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Essays in Honor of M  Hashem Pesaran

Download or read book Essays in Honor of M Hashem Pesaran written by Alexander Chudik and published by Emerald Group Publishing. This book was released on 2022-01-18 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: The collection of chapters in Volume 43 Part B of Advances in Econometrics serves as a tribute to one of the most innovative, influential, and productive econometricians of his generation, Professor M. Hashem Pesaran.

Book Essays in Panel Data Econometrics

Download or read book Essays in Panel Data Econometrics written by Marc Nerlove and published by Cambridge University Press. This book was released on 2005-11-10 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects seven classic essays on panel data econometrics, and a cogent essay on the history of the subject.

Book Essays in Honor of Cheng Hsiao

Download or read book Essays in Honor of Cheng Hsiao written by Dek Terrell and published by Emerald Group Publishing. This book was released on 2020-04-15 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Including contributions spanning a variety of theoretical and applied topics in econometrics, this volume of Advances in Econometrics is published in honour of Cheng Hsiao.

Book Bayesian Data Analysis  Third Edition

Download or read book Bayesian Data Analysis Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Book Dynamic Linear Models with R

Download or read book Dynamic Linear Models with R written by Giovanni Petris and published by Springer Science & Business Media. This book was released on 2009-06-12 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.

Book Dissertation Abstracts International

Download or read book Dissertation Abstracts International written by and published by . This book was released on 2008 with total page 732 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Essays on finite mixture models

    Book Details:
  • Author : Abram van Dijk
  • Publisher : Rozenberg Publishers
  • Release : 2009
  • ISBN : 9036101344
  • Pages : 138 pages

Download or read book Essays on finite mixture models written by Abram van Dijk and published by Rozenberg Publishers. This book was released on 2009 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite mixture distributions are a weighted average of a finite number of distributions. The latter are usually called the mixture components. The weights are usually described by a multinomial distribution and are sometimes called mixing proportions. The mixture components may be the same type of distributions with di®erent parameter values but they may also be completely different distributions. Therefore, finite mixture distributions are very °exible for modeling data. They are frequently used as a building block within many modern econometric models. The specification of the mixture distribution depends on the modeling problem at hand. In this thesis, we introduce new applications of finite mixtures to deal with several di®erent modeling issues. Each chapter of the thesis focusses on a specific modeling issue. The parameters of some of the resulting models can be estimated using standard techniques but for some of the chapters we need to develop new estimation and inference methods. To illustrate how the methods can be applied, we analyze at least one empirical data set for each approach. These data sets cover a wide range of research fields, such as macroeconomics, marketing, and political science. We show the usefulness of the methods and, in some cases, the improvement over previous methods in the literature.

Book Applied Bayesian Hierarchical Methods

Download or read book Applied Bayesian Hierarchical Methods written by Peter D. Congdon and published by CRC Press. This book was released on 2010-05-19 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of Markov chain Monte Carlo (MCMC) methods for estimating hierarchical models involves complex data structures and is often described as a revolutionary development. An intermediate-level treatment of Bayesian hierarchical models and their applications, Applied Bayesian Hierarchical Methods demonstrates the advantages of a Bayesian approach

Book Flexible Bayesian Regression Modelling

Download or read book Flexible Bayesian Regression Modelling written by Yanan Fan and published by Academic Press. This book was released on 2019-10-30 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Flexible Bayesian Regression Modeling is a step-by-step guide to the Bayesian revolution in regression modeling, for use in advanced econometric and statistical analysis where datasets are characterized by complexity, multiplicity, and large sample sizes, necessitating the need for considerable flexibility in modeling techniques. It reviews three forms of flexibility: methods which provide flexibility in their error distribution; methods which model non-central parts of the distribution (such as quantile regression); and finally models that allow the mean function to be flexible (such as spline models). Each chapter discusses the key aspects of fitting a regression model. R programs accompany the methods. This book is particularly relevant to non-specialist practitioners with intermediate mathematical training seeking to apply Bayesian approaches in economics, biology, finance, engineering and medicine. - Introduces powerful new nonparametric Bayesian regression techniques to classically trained practitioners - Focuses on approaches offering both superior power and methodological flexibility - Supplemented with instructive and relevant R programs within the text - Covers linear regression, nonlinear regression and quantile regression techniques - Provides diverse disciplinary case studies for correlation and optimization problems drawn from Bayesian analysis 'in the wild'

Book Generalized Latent Variable Modeling

Download or read book Generalized Latent Variable Modeling written by Anders Skrondal and published by CRC Press. This book was released on 2004-05-11 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book unifies and extends latent variable models, including multilevel or generalized linear mixed models, longitudinal or panel models, item response or factor models, latent class or finite mixture models, and structural equation models. Following a gentle introduction to latent variable modeling, the authors clearly explain and contrast a wi

Book Essays in Honor of M  Hashem Pesaran

Download or read book Essays in Honor of M Hashem Pesaran written by Alexander Chudik and published by Emerald Group Publishing. This book was released on 2022-01-18 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: The collection of chapters in Volume 43 Part B of Advances in Econometrics serves as a tribute to one of the most innovative, influential, and productive econometricians of his generation, Professor M. Hashem Pesaran.

Book Time Series and Panel Data Econometrics

Download or read book Time Series and Panel Data Econometrics written by M. Hashem Pesaran and published by Oxford University Press. This book was released on 2015-10-01 with total page 1443 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is concerned with recent developments in time series and panel data techniques for the analysis of macroeconomic and financial data. It provides a rigorous, nevertheless user-friendly, account of the time series techniques dealing with univariate and multivariate time series models, as well as panel data models. It is distinct from other time series texts in the sense that it also covers panel data models and attempts at a more coherent integration of time series, multivariate analysis, and panel data models. It builds on the author's extensive research in the areas of time series and panel data analysis and covers a wide variety of topics in one volume. Different parts of the book can be used as teaching material for a variety of courses in econometrics. It can also be used as reference manual. It begins with an overview of basic econometric and statistical techniques, and provides an account of stochastic processes, univariate and multivariate time series, tests for unit roots, cointegration, impulse response analysis, autoregressive conditional heteroskedasticity models, simultaneous equation models, vector autoregressions, causality, forecasting, multivariate volatility models, panel data models, aggregation and global vector autoregressive models (GVAR). The techniques are illustrated using Microfit 5 (Pesaran and Pesaran, 2009, OUP) with applications to real output, inflation, interest rates, exchange rates, and stock prices.

Book Panel Data Econometrics

Download or read book Panel Data Econometrics written by Mike Tsionas and published by Academic Press. This book was released on 2019-06-19 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Panel Data Econometrics: Theory introduces econometric modelling. Written by experts from diverse disciplines, the volume uses longitudinal datasets to illuminate applications for a variety of fields, such as banking, financial markets, tourism and transportation, auctions, and experimental economics. Contributors emphasize techniques and applications, and they accompany their explanations with case studies, empirical exercises and supplementary code in R. They also address panel data analysis in the context of productivity and efficiency analysis, where some of the most interesting applications and advancements have recently been made. - Provides a vast array of empirical applications useful to practitioners from different application environments - Accompanied by extensive case studies and empirical exercises - Includes empirical chapters accompanied by supplementary code in R, helping researchers replicate findings - Represents an accessible resource for diverse industries, including health, transportation, tourism, economic growth, and banking, where researchers are not always econometrics experts

Book Accelerating Monte Carlo methods for Bayesian inference in dynamical models

Download or read book Accelerating Monte Carlo methods for Bayesian inference in dynamical models written by Johan Dahlin and published by Linköping University Electronic Press. This book was released on 2016-03-22 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Making decisions and predictions from noisy observations are two important and challenging problems in many areas of society. Some examples of applications are recommendation systems for online shopping and streaming services, connecting genes with certain diseases and modelling climate change. In this thesis, we make use of Bayesian statistics to construct probabilistic models given prior information and historical data, which can be used for decision support and predictions. The main obstacle with this approach is that it often results in mathematical problems lacking analytical solutions. To cope with this, we make use of statistical simulation algorithms known as Monte Carlo methods to approximate the intractable solution. These methods enjoy well-understood statistical properties but are often computational prohibitive to employ. The main contribution of this thesis is the exploration of different strategies for accelerating inference methods based on sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC). That is, strategies for reducing the computational effort while keeping or improving the accuracy. A major part of the thesis is devoted to proposing such strategies for the MCMC method known as the particle Metropolis-Hastings (PMH) algorithm. We investigate two strategies: (i) introducing estimates of the gradient and Hessian of the target to better tailor the algorithm to the problem and (ii) introducing a positive correlation between the point-wise estimates of the target. Furthermore, we propose an algorithm based on the combination of SMC and Gaussian process optimisation, which can provide reasonable estimates of the posterior but with a significant decrease in computational effort compared with PMH. Moreover, we explore the use of sparseness priors for approximate inference in over-parametrised mixed effects models and autoregressive processes. This can potentially be a practical strategy for inference in the big data era. Finally, we propose a general method for increasing the accuracy of the parameter estimates in non-linear state space models by applying a designed input signal. Borde Riksbanken höja eller sänka reporäntan vid sitt nästa möte för att nå inflationsmålet? Vilka gener är förknippade med en viss sjukdom? Hur kan Netflix och Spotify veta vilka filmer och vilken musik som jag vill lyssna på härnäst? Dessa tre problem är exempel på frågor där statistiska modeller kan vara användbara för att ge hjälp och underlag för beslut. Statistiska modeller kombinerar teoretisk kunskap om exempelvis det svenska ekonomiska systemet med historisk data för att ge prognoser av framtida skeenden. Dessa prognoser kan sedan användas för att utvärdera exempelvis vad som skulle hända med inflationen i Sverige om arbetslösheten sjunker eller hur värdet på mitt pensionssparande förändras när Stockholmsbörsen rasar. Tillämpningar som dessa och många andra gör statistiska modeller viktiga för många delar av samhället. Ett sätt att ta fram statistiska modeller bygger på att kontinuerligt uppdatera en modell allteftersom mer information samlas in. Detta angreppssätt kallas för Bayesiansk statistik och är särskilt användbart när man sedan tidigare har bra insikter i modellen eller tillgång till endast lite historisk data för att bygga modellen. En nackdel med Bayesiansk statistik är att de beräkningar som krävs för att uppdatera modellen med den nya informationen ofta är mycket komplicerade. I sådana situationer kan man istället simulera utfallet från miljontals varianter av modellen och sedan jämföra dessa mot de historiska observationerna som finns till hands. Man kan sedan medelvärdesbilda över de varianter som gav bäst resultat för att på så sätt ta fram en slutlig modell. Det kan därför ibland ta dagar eller veckor för att ta fram en modell. Problemet blir särskilt stort när man använder mer avancerade modeller som skulle kunna ge bättre prognoser men som tar för lång tid för att bygga. I denna avhandling använder vi ett antal olika strategier för att underlätta eller förbättra dessa simuleringar. Vi föreslår exempelvis att ta hänsyn till fler insikter om systemet och därmed minska antalet varianter av modellen som behöver undersökas. Vi kan således redan utesluta vissa modeller eftersom vi har en bra uppfattning om ungefär hur en bra modell ska se ut. Vi kan också förändra simuleringen så att den enklare rör sig mellan olika typer av modeller. På detta sätt utforskas rymden av alla möjliga modeller på ett mer effektivt sätt. Vi föreslår ett antal olika kombinationer och förändringar av befintliga metoder för att snabba upp anpassningen av modellen till observationerna. Vi visar att beräkningstiden i vissa fall kan minska ifrån några dagar till någon timme. Förhoppningsvis kommer detta i framtiden leda till att man i praktiken kan använda mer avancerade modeller som i sin tur resulterar i bättre prognoser och beslut.

Book Modeling Ordered Choices

Download or read book Modeling Ordered Choices written by William H. Greene and published by Cambridge University Press. This book was released on 2010-04-08 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is increasingly common for analysts to seek out the opinions of individuals and organizations using attitudinal scales such as degree of satisfaction or importance attached to an issue. Examples include levels of obesity, seriousness of a health condition, attitudes towards service levels, opinions on products, voting intentions, and the degree of clarity of contracts. Ordered choice models provide a relevant methodology for capturing the sources of influence that explain the choice made amongst a set of ordered alternatives. The methods have evolved to a level of sophistication that can allow for heterogeneity in the threshold parameters, in the explanatory variables (through random parameters), and in the decomposition of the residual variance. This book brings together contributions in ordered choice modeling from a number of disciplines, synthesizing developments over the last fifty years, and suggests useful extensions to account for the wide range of sources of influence on choice.

Book Bayesian Spectrum Analysis and Parameter Estimation

Download or read book Bayesian Spectrum Analysis and Parameter Estimation written by G. Larry Bretthorst and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is essentially an extensive revision of my Ph.D. dissertation, [1J. It 1S primarily a research document on the application of probability theory to the parameter estimation problem. The people who will be interested in this material are physicists, economists, and engineers who have to deal with data on a daily basis; consequently, we have included a great deal of introductory and tutorial material. Any person with the equivalent of the mathematics background required for the graduate level study of physics should be able to follow the material contained in this book, though not without eIfort. From the time the dissertation was written until now (approximately one year) our understanding of the parameter estimation problem has changed extensively. We have tried to incorporate what we have learned into this book. I am indebted to a number of people who have aided me in preparing this docu ment: Dr. C. Ray Smith, Steve Finney, Juana Sunchez, Matthew Self, and Dr. Pat Gibbons who acted as readers and editors. In addition, I must extend my deepest thanks to Dr. Joseph Ackerman for his support during the time this manuscript was being prepared.

Book Journal of Economic Literature

Download or read book Journal of Economic Literature written by and published by . This book was released on 2004 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: