Download or read book New Foundations for Information Theory written by David Ellerman and published by Springer Nature. This book was released on 2021-10-30 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph offers a new foundation for information theory that is based on the notion of information-as-distinctions, being directly measured by logical entropy, and on the re-quantification as Shannon entropy, which is the fundamental concept for the theory of coding and communications. Information is based on distinctions, differences, distinguishability, and diversity. Information sets are defined that express the distinctions made by a partition, e.g., the inverse-image of a random variable so they represent the pre-probability notion of information. Then logical entropy is a probability measure on the information sets, the probability that on two independent trials, a distinction or “dit” of the partition will be obtained. The formula for logical entropy is a new derivation of an old formula that goes back to the early twentieth century and has been re-derived many times in different contexts. As a probability measure, all the compound notions of joint, conditional, and mutual logical entropy are immediate. The Shannon entropy (which is not defined as a measure in the sense of measure theory) and its compound notions are then derived from a non-linear dit-to-bit transform that re-quantifies the distinctions of a random variable in terms of bits—so the Shannon entropy is the average number of binary distinctions or bits necessary to make all the distinctions of the random variable. And, using a linearization method, all the set concepts in this logical information theory naturally extend to vector spaces in general—and to Hilbert spaces in particular—for quantum logical information theory which provides the natural measure of the distinctions made in quantum measurement. Relatively short but dense in content, this work can be a reference to researchers and graduate students doing investigations in information theory, maximum entropy methods in physics, engineering, and statistics, and to all those with a special interest in a new approach to quantum information theory.
Download or read book John von Neumann and the Foundations of Quantum Physics written by Miklós Rédei and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: John von Neumann (1903-1957) was undoubtedly one of the scientific geniuses of the 20th century. The main fields to which he contributed include various disciplines of pure and applied mathematics, mathematical and theoretical physics, logic, theoretical computer science, and computer architecture. Von Neumann was also actively involved in politics and science management and he had a major impact on US government decisions during, and especially after, the Second World War. There exist several popular books on his personality and various collections focusing on his achievements in mathematics, computer science, and economy. Strangely enough, to date no detailed appraisal of his seminal contributions to the mathematical foundations of quantum physics has appeared. Von Neumann's theory of measurement and his critique of hidden variables became the touchstone of most debates in the foundations of quantum mechanics. Today, his name also figures most prominently in the mathematically rigorous branches of contemporary quantum mechanics of large systems and quantum field theory. And finally - as one of his last lectures, published in this volume for the first time, shows - he considered the relation of quantum logic and quantum mechanical probability as his most important problem for the second half of the twentieth century. The present volume embraces both historical and systematic analyses of his methodology of mathematical physics, and of the various aspects of his work in the foundations of quantum physics, such as theory of measurement, quantum logic, and quantum mechanical entropy. The volume is rounded off by previously unpublished letters and lectures documenting von Neumann's thinking about quantum theory after his 1932 Mathematical Foundations of Quantum Mechanics. The general part of the Yearbook contains papers emerging from the Institute's annual lecture series and reviews of important publications of philosophy of science and its history.
Download or read book Foundations and Interpretation of Quantum Mechanics written by Gennaro Auletta and published by World Scientific. This book was released on 2001 with total page 1030 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is twofold: to provide a comprehensive account of the foundations of the theory and to outline a theoretical and philosophical interpretation suggested from the results of the last twenty years.There is a need to provide an account of the foundations of the theory because recent experience has largely confirmed the theory and offered a wealth of new discoveries and possibilities. On the other side, the following results have generated a new basis for discussing the problem of the interpretation: the new developments in measurement theory; the experimental generation of ?Schrdinger cats?; recent developments which allow, for the first time, the simultaneous measurement of complementary observables; quantum information processing, teleportation and computation.To accomplish this task, the book combines historical, systematic and thematic approaches.
Download or read book Information Theory and Quantum Physics written by Herbert S. Green and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this highly readable book, H.S. Green, a former student of Max Born and well known as an author in physics and in the philosophy of science, presents a timely analysis of theoretical physics and related fundamental problems.
Download or read book Statistical Mechanics And Scientific Explanation Determinism Indeterminism And Laws Of Nature written by Valia Allori and published by World Scientific. This book was released on 2020-04-22 with total page 698 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book explores several open questions in the philosophy and the foundations of statistical mechanics. Each chapter is written by a leading expert in philosophy of physics and/or mathematical physics. Here is a list of questions that are addressed in the book:
Download or read book The Statistical Foundations Of Entropy written by John D Ramshaw and published by World Scientific. This book was released on 2017-11-24 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an innovative unified approach to the statistical foundations of entropy and the fundamentals of equilibrium statistical mechanics. These intimately related subjects are often developed in a fragmented historical manner which obscures the essential simplicity of their logical structure. In contrast, this book critically reassesses and systematically reorganizes the basic concepts into a simpler sequential framework which reveals more clearly their logical relationships. The inherent indistinguishability of identical particles is emphasized, and the resulting unification of classical and quantum statistics is discussed in detail.The discussion is focused entirely on fundamental concepts, so applications are omitted. The book is written at the advanced undergraduate or beginning graduate level, and will be useful as a concise supplement to conventional books and courses in statistical mechanics, thermal physics, and thermodynamics. It is also suitable for self-study by those seeking a deeper and more detailed analysis of the fundamentals.
Download or read book Quantum Stochastic Thermodynamics written by Philipp Strasberg and published by Oxford University Press. This book was released on 2022 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of thermodynamics has been one of the bedrocks of 19th-century physics, and thermodynamic problems have inspired Planck's quantum hypothesis. One hundred years later, in an era where we design increasingly sophisticated nanotechnologies, researchers in quantum physics have been 'returning to their roots', attempting to reconcile modern nanoscale devices with the theory of thermodynamics. This textbook explains how it is possible to unify the two opposite pictures of microscopic quantum physics and macroscopic thermodynamics in one consistent framework, proving that the ancient theory of thermodynamics still offers many remarkable insights into present-day problems. This textbook focuses on the microscopic derivation and understanding of key principles and concepts and their interrelation. The topics covered in this book include (quantum) stochastic processes, (quantum) master equations, local detailed balance, classical stochastic thermodynamics, (quantum) fluctuation theorems, strong coupling and non-Markovian effects, thermodynamic uncertainty relations, operational approaches, Maxwell's demon, and time-reversal symmetry, among other topics. The textbook also explores several practical applications of the theory in more detail, including single-molecule pulling experiments, quantum transport and thermoelectric effects in quantum dots, the micromaser, and related setups in quantum optics. The aim of this book is to inspire readers to investigate a plethora of modern nanoscale devices from a thermodynamic point of view, allowing them to address their dissipation, efficiency, reliability, and power based on a conceptually clear understanding about the microscopic origin of heat, entropy, and the second law. The book is accessible to graduate students, post-docs, and lecturers, but will also be of interest to all researchers striving for a deeper understanding of the laws of thermodynamics beyond their traditional realm of applicability.
Download or read book Quantum Information Processing with Finite Resources written by Marco Tomamichel and published by Springer. This book was released on 2015-10-14 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the reader with the mathematical framework required to fully explore the potential of small quantum information processing devices. As decoherence will continue to limit their size, it is essential to master the conceptual tools which make such investigations possible. A strong emphasis is given to information measures that are essential for the study of devices of finite size, including Rényi entropies and smooth entropies. The presentation is self-contained and includes rigorous and concise proofs of the most important properties of these measures. The first chapters will introduce the formalism of quantum mechanics, with particular emphasis on norms and metrics for quantum states. This is necessary to explore quantum generalizations of Rényi divergence and conditional entropy, information measures that lie at the core of information theory. The smooth entropy framework is discussed next and provides a natural means to lift many arguments from information theory to the quantum setting. Finally selected applications of the theory to statistics and cryptography are discussed. The book is aimed at graduate students in Physics and Information Theory. Mathematical fluency is necessary, but no prior knowledge of quantum theory is required.
Download or read book Mathematical Foundations of Quantum Mechanics written by John von Neumann and published by Princeton University Press. This book was released on 1955 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: A revolutionary book that for the first time provided a rigorous mathematical framework for quantum mechanics. -- Google books
Download or read book Complexity Entropy And The Physics Of Information written by Wojciech H. Zurek and published by CRC Press. This book was released on 2018-03-08 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has emerged from a meeting held during the week of May 29 to June 2, 1989, at St. John’s College in Santa Fe under the auspices of the Santa Fe Institute. The (approximately 40) official participants as well as equally numerous “groupies” were enticed to Santa Fe by the above “manifesto.” The book—like the “Complexity, Entropy and the Physics of Information” meeting explores not only the connections between quantum and classical physics, information and its transfer, computation, and their significance for the formulation of physical theories, but it also considers the origins and evolution of the information-processing entities, their complexity, and the manner in which they analyze their perceptions to form models of the Universe. As a result, the contributions can be divided into distinct sections only with some difficulty. Indeed, I regard this degree of overlapping as a measure of the success of the meeting. It signifies consensus about the important questions and on the anticipated answers: they presumably lie somewhere in the “border territory,” where information, physics, complexity, quantum, and computation all meet.
Download or read book Foundations of Classical and Quantum Statistical Mechanics written by R. Jancel and published by Elsevier. This book was released on 2013-10-22 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundations of Classical and Quantum Statistical Mechanics details the theoretical foundation the supports the concepts in classical and quantum statistical mechanics. The title discusses the various problems set by the theoretical justification of statistical mechanics methods. The text first covers the the ergodic theory in classical statistical mechanics, and then proceeds to tackling quantum mechanical ensembles. Next, the selection discusses the the ergodic theorem in quantum statistical mechanics and probability quantum ergodic theorems. The selection also details H-theorems and kinetic equations in classical and quantum statistical mechanics. The book will be of great interest to students, researchers, and practitioners of physics, chemistry, and engineering.
Download or read book The Janus Point written by Julian Barbour and published by Basic Books. This book was released on 2020-12-01 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a universe filled by chaos and disorder, one physicist makes the radical argument that the growth of order drives the passage of time -- and shapes the destiny of the universe. Time is among the universe's greatest mysteries. Why, when most laws of physics allow for it to flow forward and backward, does it only go forward? Physicists have long appealed to the second law of thermodynamics, held to predict the increase of disorder in the universe, to explain this. In The Janus Point, physicist Julian Barbour argues that the second law has been misapplied and that the growth of order determines how we experience time. In his view, the big bang becomes the "Janus point," a moment of minimal order from which time could flow, and order increase, in two directions. The Janus Point has remarkable implications: while most physicists predict that the universe will become mired in disorder, Barbour sees the possibility that order -- the stuff of life -- can grow without bound. A major new work of physics, The Janus Point will transform our understanding of the nature of existence.
Download or read book Quantum Information Theory and the Foundations of Quantum Mechanics written by Christopher G. Timpson and published by Oxford Philosophical Monograph. This book was released on 2013-04-25 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Christopher G. Timpson provides the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. He argues for an ontologically deflationary account of the nature of quantum information, which is grounded in a revisionary analysis of the concepts of information.
Download or read book Mathematical Foundations and Applications of Graph Entropy written by Matthias Dehmer and published by John Wiley & Sons. This book was released on 2017-09-12 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: This latest addition to the successful Network Biology series presents current methods for determining the entropy of networks, making it the first to cover the recently established Quantitative Graph Theory. An excellent international team of editors and contributors provides an up-to-date outlook for the field, covering a broad range of graph entropy-related concepts and methods. The topics range from analyzing mathematical properties of methods right up to applying them in real-life areas. Filling a gap in the contemporary literature this is an invaluable reference for a number of disciplines, including mathematicians, computer scientists, computational biologists, and structural chemists.
Download or read book Non Equilibrium Statistical Mechanics written by Ilya Prigogine and published by Courier Dover Publications. This book was released on 2017-03-17 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Groundbreaking monograph by Nobel Prize winner for researchers and graduate students covers Liouville equation, anharmonic solids, Brownian motion, weakly coupled gases, scattering theory and short-range forces, general kinetic equations, more. 1962 edition.
Download or read book Holographic Entanglement Entropy written by Mukund Rangamani and published by Springer. This book was released on 2017-05-08 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of developments in the field of holographic entanglement entropy. Within the context of the AdS/CFT correspondence, it is shown how quantum entanglement is computed by the area of certain extremal surfaces. The general lessons one can learn from this connection are drawn out for quantum field theories, many-body physics, and quantum gravity. An overview of the necessary background material is provided together with a flavor of the exciting open questions that are currently being discussed. The book is divided into four main parts. In the first part, the concept of entanglement, and methods for computing it, in quantum field theories is reviewed. In the second part, an overview of the AdS/CFT correspondence is given and the holographic entanglement entropy prescription is explained. In the third part, the time-dependence of entanglement entropy in out-of-equilibrium systems, and applications to many body physics are explored using holographic methods. The last part focuses on the connection between entanglement and geometry. Known constraints on the holographic map, as well as, elaboration of entanglement being a fundamental building block of geometry are explained. The book is a useful resource for researchers and graduate students interested in string theory and holography, condensed matter and quantum information, as it tries to connect these different subjects linked by the common theme of quantum entanglement.
Download or read book Quantum Information Theory written by Mark Wilde and published by Cambridge University Press. This book was released on 2013-04-18 with total page 673 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained, graduate-level textbook that develops from scratch classical results as well as advances of the past decade.