Download or read book Biochemical Engineering and Biotechnology written by Ghasem Najafpour and published by Elsevier. This book was released on 2015-02-24 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biochemical Engineering and Biotechnology, 2nd Edition, outlines the principles of biochemical processes and explains their use in the manufacturing of every day products. The author uses a diirect approach that should be very useful for students in following the concepts and practical applications. This book is unique in having many solved problems, case studies, examples and demonstrations of detailed experiments, with simple design equations and required calculations. - Covers major concepts of biochemical engineering and biotechnology, including applications in bioprocesses, fermentation technologies, enzymatic processes, and membrane separations, amongst others - Accessible to chemical engineering students who need to both learn, and apply, biological knowledge in engineering principals - Includes solved problems, examples, and demonstrations of detailed experiments with simple design equations and all required calculations - Offers many graphs that present actual experimental data, figures, and tables, along with explanations
Download or read book Putting Biotechnology to Work written by National Research Council and published by National Academies Press. This book was released on 1992-02-01 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ability of the United States to sustain a dominant global position in biotechnology lies in maintaining its primacy in basic life-science research and developing a strong resource base for bioprocess engineering and bioproduct manufacturing. This book examines the status of bioprocessing and biotechnology in the United States; current bioprocess technology, products, and opportunities; and challenges of the future and what must be done to meet those challenges. It gives recommendations for action to provide suitable incentives to establish a national program in bioprocess-engineering research, development, education, and technology transfer.
Download or read book Engineering Principles in Biotechnology written by Wei-Shou Hu and published by John Wiley & Sons. This book was released on 2017-11-13 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a short introduction to the engineering principles of harnessing the vast potential of microorganisms, and animal and plant cells in making biochemical products. It was written for scientists who have no background in engineering, and for engineers with minimal background in biology. The overall subject dealt with is process. But the coverage goes beyond the process of biomanufacturing in the bioreactor, and extends to the factory of cell’s biosynthetic machinery. Starting with an overview of biotechnology and organism, engineers are eased into biochemical reactions and life scientists are exposed to the technology of production using cells. Subsequent chapters allow engineers to be acquainted with biochemical pathways, while life scientist learn about stoichiometric and kinetic principles of reactions and cell growth. This leads to the coverage of reactors, oxygen transfer and scale up. Following three chapters on biomanufacturing of current and future importance, i.e. cell culture, stem cells and synthetic biology, the topic switches to product purification, first with a conceptual coverage of operations used in bioseparation, and then a more detailed analysis to provide a conceptual understanding of chromatography, the modern workhorse of bioseparation. Drawing on principles from engineering and life sciences, this book is for practitioners in biotechnology and bioengineering. The author has used the book for a course for advanced students in both engineering and life sciences. To this end, problems are provided at the end of each chapter.
Download or read book Industrialization of Biology written by National Research Council and published by National Academies Press. This book was released on 2015-06-29 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: The tremendous progress in biology over the last half century - from Watson and Crick's elucidation of the structure of DNA to today's astonishing, rapid progress in the field of synthetic biology - has positioned us for significant innovation in chemical production. New bio-based chemicals, improved public health through improved drugs and diagnostics, and biofuels that reduce our dependency on oil are all results of research and innovation in the biological sciences. In the past decade, we have witnessed major advances made possible by biotechnology in areas such as rapid, low-cost DNA sequencing, metabolic engineering, and high-throughput screening. The manufacturing of chemicals using biological synthesis and engineering could expand even faster. A proactive strategy - implemented through the development of a technical roadmap similar to those that enabled sustained growth in the semiconductor industry and our explorations of space - is needed if we are to realize the widespread benefits of accelerating the industrialization of biology. Industrialization of Biology presents such a roadmap to achieve key technical milestones for chemical manufacturing through biological routes. This report examines the technical, economic, and societal factors that limit the adoption of bioprocessing in the chemical industry today and which, if surmounted, would markedly accelerate the advanced manufacturing of chemicals via industrial biotechnology. Working at the interface of synthetic chemistry, metabolic engineering, molecular biology, and synthetic biology, Industrialization of Biology identifies key technical goals for next-generation chemical manufacturing, then identifies the gaps in knowledge, tools, techniques, and systems required to meet those goals, and targets and timelines for achieving them. This report also considers the skills necessary to accomplish the roadmap goals, and what training opportunities are required to produce the cadre of skilled scientists and engineers needed.
Download or read book Modern Biotechnology written by Nathan S. Mosier and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique resource for the next generation of biotech innovators Enabling everything from the deciphering of the human genome to environmentally friendly biofuels to lifesaving new pharmaceuticals, biotechnology has blossomed as an area of discovery and opportunity. Modern Biotechnology provides a much-needed introduction connecting the latest innovations in this area to key engineering fundamentals. With an unmatched level of coverage, this unique resource prepares a wide range of readers for the practical application of biotechnology in biopharmaceuticals, biofuels, and other bioproducts. Organized into fourteen sections, reflecting a typical semester course, Modern Biotechnology covers such key topics as: Metabolic engineering Enzymes and enzyme kinetics Biocatalysts and other new bioproducts Cell fusion Genetic engineering, DNA, RNA, and genes Genomes and genomics Production of biopharmaceuticals Fermentation modeling and process analysis Taking a practical, applications-based approach, the text presents discussions of important fundamentals in biology, biochemistry, and engineering with relevant case studies showing technology applications and manufacturing scale-up. Written for today's wider, more interdisciplinary readership, Modern Biotechnology offers a solid intellectual foundation for students and professionals entering the modern biotechnology industry.
Download or read book Green Processes Volume 8 written by and published by John Wiley & Sons. This book was released on 2014-04-23 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: The shift towards being as environmentally-friendly as possible has resulted in the need for this important volume on the topic of green nanoscience. Edited by two rising stars in the community, Alvise Perosa and Maurizio Selva, this is an essential resource for anyone wishing to gain an understanding of the world of green chemistry, as well as for chemists, environmental agencies and chemical engineers.
Download or read book Biotechnology and Biopharmaceutical Manufacturing Processing and Preservation written by Kenneth E. Avis and published by CRC Press. This book was released on 1996-03-31 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this unique book, experts describe practices applicable to the large-scale processing of biotechnological products. Beginning with processing and bulk storage preservation techniques, the book provides strategies for improving efficiency of process campaigns of multiple products and manufacturing facilities for such processing techniques. Large-scale chromatography for the purification of biomolecules in manufacturing and lyophilization of protein pharmaceuticals are discussed. Includes a case study on blow-fill-seal processing technology and a chapter on economic and cost factors for bioprocess engineering.
Download or read book Advanced Micro and Nano manufacturing Technologies written by Shrikrishna Nandkishor Joshi and published by Springer Nature. This book was released on 2021-10-01 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume focuses on the fundamentals and advancements in micro and nanomanufacturing technologies applied in the biomedical and biochemical domain. The contents of this volume provide comprehensive coverage of the physical principles of advanced manufacturing technologies and the know-how of their applications in the fabrication of biomedical devices and systems. The book begins by documenting the journey of miniaturization and micro-and nano-fabrication. It then delves into the fundamentals of various advanced technologies such as micro-wire moulding, 3D printing, lithography, imprinting, direct laser machining, and laser-induced plasma-assisted machining. It also covers laser-based technologies which are a promising option due to their flexibility, ease in control and application, high precision, and availability. These technologies can be employed to process several materials such as glass, polymers: polycarbonate, polydimethylsiloxane, polymethylmethacrylate, and metals such as stainless steel, which are commonly used in the fabrication of biomedical devices, such as microfluidic technology, optical and fiber-optic sensors, and electro-chemical bio-sensors. It also discusses advancements in various MEMS/NEMS based technologies and their applications in energy conversion and storage devices. The chapters are written by experts from the fields of micro- and nano-manufacturing, materials engineering, nano-biotechnology, and end-users such as clinicians, engineers, academicians of interdisciplinary background. This book will be a useful guide for academia and industry alike.
Download or read book Protein Engineering written by Huimin Zhao and published by John Wiley & Sons. This book was released on 2021-08-23 with total page 41 pages. Available in PDF, EPUB and Kindle. Book excerpt: A one-stop reference that reviews protein design strategies to applications in industrial and medical biotechnology Protein Engineering: Tools and Applications is a comprehensive resource that offers a systematic and comprehensive review of the most recent advances in the field, and contains detailed information on the methodologies and strategies behind these approaches. The authors—noted experts on the topic—explore the distinctive advantages and disadvantages of the presented methodologies and strategies in a targeted and focused manner that allows for the adaptation and implementation of the strategies for new applications. The book contains information on the directed evolution, rational design, and semi-rational design of proteins and offers a review of the most recent applications in industrial and medical biotechnology. This important book: Covers technologies and methodologies used in protein engineering Includes the strategies behind the approaches, designed to help with the adaptation and implementation of these strategies for new applications Offers a comprehensive and thorough treatment of protein engineering from primary strategies to applications in industrial and medical biotechnology Presents cutting edge advances in the continuously evolving field of protein engineering Written for students and professionals of bioengineering, biotechnology, biochemistry, Protein Engineering: Tools and Applications offers an essential resource to the design strategies in protein engineering and reviews recent applications.
Download or read book Handbook of Industrial Chemistry and Biotechnology written by James A. Kent and published by Springer Science & Business Media. This book was released on 2013-01-13 with total page 1560 pages. Available in PDF, EPUB and Kindle. Book excerpt: Substantially revising and updating the classic reference in the field, this handbook offers a valuable overview and myriad details on current chemical processes, products, and practices. No other source offers as much data on the chemistry, engineering, economics, and infrastructure of the industry. The Handbook serves a spectrum of individuals, from those who are directly involved in the chemical industry to others in related industries and activities. It provides not only the underlying science and technology for important industry sectors, but also broad coverage of critical supporting topics. Industrial processes and products can be much enhanced through observing the tenets and applying the methodologies found in chapters on Green Engineering and Chemistry (specifically, biomass conversion), Practical Catalysis, and Environmental Measurements; as well as expanded treatment of Safety, chemistry plant security, and Emergency Preparedness. Understanding these factors allows them to be part of the total process and helps achieve optimum results in, for example, process development, review, and modification. Important topics in the energy field, namely nuclear, coal, natural gas, and petroleum, are covered in individual chapters. Other new chapters include energy conversion, energy storage, emerging nanoscience and technology. Updated sections include more material on biomass conversion, as well as three chapters covering biotechnology topics, namely, Industrial Biotechnology, Industrial Enzymes, and Industrial Production of Therapeutic Proteins.
Download or read book Industrial Biotechnology written by Devarajan Thangadurai and published by CRC Press. This book was released on 2017-03-03 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: This important new book covers recent advancements, innovations, and technologies in industrial biotechnology, specifically addressing the application of various biomolecules in industrial production and in cleaning and environmental remediation sectors. The goal of industrial biotechnology is to develop new techniques and technologies to transform renewable raw materials into chemicals, materials, and fuels by the substitution of fossil fuels. With the increase in the world’s population and the resultant growing energy demand, the need for more energy can be successfully met with the advancements in industrial biotechnology. Currently across the globe significant research has been undertaken in the production of cleaner fuels, materials, and semi-synthetic chemicals, with environmental benefits. Developing countries have huge agricultural resources that could be utilized for production of value-added byproducts for the sustainable development of bio-based economy. The book opens with the chapter on the production of exopolysaccharides from halophilic microorganisms, a polymer that is normally very useful in various production sectors of the food, pharmaceutical, and petroleum industries. The book goes on to cover: The production of antimicrobial compounds from alkaliphilic bacteria Thermophilic actinomycetes Food, agro, and pharmaceutical potential and biotechnological applications of biosurfactants, halophiles, cyclodextrin glycosyl transferease, fungal chitinase, proteases, yeasts and yeast products Also covered in the book are the environmental aspects of industrial biotechnology such as the genetic enhancement for biofuel production, the production of biodegradable thermoplastics, advancements in the synthesis of bio-oil, ecofriendly treatment of agro-based lignocelluloses, and anaerobic bio reactors for hydrocarbon remediation. The international roster of chapter authors have been chosen for their renowned expertise and contribution to the various fields of industrial biotechnology. This book is suitable to chemists, biotechnologists from research institutes, academia, and students as well as for industry professionals
Download or read book Downstream Industrial Biotechnology written by Michael C. Flickinger and published by John Wiley & Sons. This book was released on 2013-07-17 with total page 884 pages. Available in PDF, EPUB and Kindle. Book excerpt: DOWNSTREAM INDUSTRIAL BIOTECHNOLOGY An affordable, easily accessible desk reference on biomanufacturing, focused on downstream recovery and purification Advances in the fundamental knowledge surrounding biotechnology, novel materials, and advanced engineering approaches continue to be translated into bioprocesses that bring new products to market at a significantly faster pace than most other industries. Industrial scale biotechnology and new manufacturing methods are revolutionizing medicine, environmental monitoring and remediation, consumer products, food production, agriculture, and forestry, and continue to be a major area of research. The downstream stage in industrial biotechnology refers to recovery, isolation, and purification of the microbial products from cell debris, processing medium and contaminating biomolecules from the upstream process into a finished product such as biopharmaceuticals and vaccines. Downstream process design has the greatest impact on overall biomanufacturing cost because not only does the biochemistry of different products ( e.g., peptides, proteins, hormones, antibiotics, and complex antigens) dictate different methods for the isolation and purification of these products, but contaminating byproducts can also reduce overall process yield, and may have serious consequences on clinical safety and efficacy. Therefore downstream separation scientists and engineers are continually seeking to eliminate, or combine, unit operations to minimize the number of process steps in order to maximize product recovery at a specified concentration and purity. Based on Wiley’s Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology, this volume features fifty articles that provide information on down- stream recovery of cells and protein capture; process development and facility design; equipment; PAT in downstream processes; downstream cGMP operations; and regulatory compliance. It covers: Cell wall disruption and lysis Cell recovery by centrifugation and filtration Large-scale protein chromatography Scale down of biopharmaceutical purification operations Lipopolysaccharide removal Porous media in biotechnology Equipment used in industrial protein purification Affinity chromatography Antibody purification, monoclonal and polyclonal Protein aggregation, precipitation and crystallization Freeze-drying of biopharmaceuticals Biopharmaceutical facility design and validation Pharmaceutical bioburden testing Regulatory requirements Ideal for graduate and advanced undergraduate courses on biomanufacturing, biochemical engineering, biopharmaceutical facility design, biochemistry, industrial microbiology, gene expression technology, and cell culture technology, Downstream Industrial Biotechnology is also a highly recommended resource for industry professionals and libraries.
Download or read book Industrial Biotechnology written by Christoph Wittmann and published by John Wiley & Sons. This book was released on 2017-03-06 with total page 642 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest volume in the Advanced Biotechnology series provides an overview of the main product classes and platform chemicals produced by biotechnological processes today, with applications in the food, healthcare and fine chemical industries. Alongside the production of drugs and flavors as well as amino acids, bio-based monomers and polymers and biofuels, basic insights are also given as to the biotechnological processes yielding such products and how large-scale production may be enabled and improved. Of interest to biotechnologists, bio and chemical engineers, as well as those working in the biotechnological, chemical, and food industries.
Download or read book Industrial Biotechnology written by Mark Anthony Benvenuto and published by Walter de Gruyter GmbH & Co KG. This book was released on 2024-10-07 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an excellent introduction to industrial biotechnology, addressing the applications of biomolecules and living systems in industrial manufacturing of various products. Each part of the book is devoted to a certain biotech sector, such as biofuels, food, chemicals, pharmaceuticals and materials. The book also covers the environmental aspects of industrial biotechnology and the principles of bio-based economy.
Download or read book Practical Pharmaceutical Engineering written by Gary Prager and published by John Wiley & Sons. This book was released on 2018-12-18 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical guide to all key the elements of pharmaceuticals and biotech manufacturing and design Engineers working in the pharmaceutical and biotech industries are routinely called upon to handle operational issues outside of their fields of expertise. Traditionally the competencies required to fulfill those tasks were achieved piecemeal, through years of self-teaching and on-the-job experience—until now. Practical Pharmaceutical Engineering provides readers with the technical information and tools needed to deal with most common engineering issues that can arise in the course of day-to-day operations of pharmaceutical/biotech research and manufacturing. Engineers working in pharma/biotech wear many hats. They are involved in the conception, design, construction, and operation of research facilities and manufacturing plants, as well as the scale-up, manufacturing, packaging, and labeling processes. They have to implement FDA regulations, validation assurance, quality control, and Good Manufacturing Practices (GMP) compliance measures, and to maintain a high level of personal and environmental safety. This book provides readers from a range of engineering specialties with a detailed blueprint and the technical knowledge needed to tackle those critical responsibilities with confidence. At minimum, after reading this book, readers will have the knowledge needed to constructively participate in contractor/user briefings. Provides pharmaceutical industry professionals with an overview of how all the parts fit together and a level of expertise that can take years of on-the-job experience to acquire Addresses topics not covered in university courses but which are crucial to working effectively in the pharma/biotech industry Fills a gap in the literature, providing important information on pharmaceutical operation issues required for meeting regulatory guidelines, plant support design, and project engineering Covers the basics of HVAC systems, water systems, electric systems, reliability, maintainability, and quality assurance, relevant to pharmaceutical engineering Practical Pharmaceutical Engineering is an indispensable “tool of the trade” for chemical engineers, mechanical engineers, and pharmaceutical engineers employed by pharmaceutical and biotech companies, engineering firms, and consulting firms. It also is a must-read for engineering students, pharmacy students, chemistry students, and others considering a career in pharmaceuticals.
Download or read book Biodefense in the Age of Synthetic Biology written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2019-01-05 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientific advances over the past several decades have accelerated the ability to engineer existing organisms and to potentially create novel ones not found in nature. Synthetic biology, which collectively refers to concepts, approaches, and tools that enable the modification or creation of biological organisms, is being pursued overwhelmingly for beneficial purposes ranging from reducing the burden of disease to improving agricultural yields to remediating pollution. Although the contributions synthetic biology can make in these and other areas hold great promise, it is also possible to imagine malicious uses that could threaten U.S. citizens and military personnel. Making informed decisions about how to address such concerns requires a realistic assessment of the capabilities that could be misused. Biodefense in the Age of Synthetic Biology explores and envisions potential misuses of synthetic biology. This report develops a framework to guide an assessment of the security concerns related to advances in synthetic biology, assesses the levels of concern warranted for such advances, and identifies options that could help mitigate those concerns.
Download or read book Cell Culture Engineering written by Wei-Shu Hu and published by Springer. This book was released on 2006-08-16 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the introduction of recombinant human growth hormone and insulin a quarter century ago, protein therapeutics has greatly broadened the ho- zon of health care. Many patients suffering with life-threatening diseases or chronic dysfunctions, which were medically untreatable not long ago, can attest to the wonder these drugs have achieved. Although the ?rst generation of p- tein therapeutics was produced in recombinant Escherichia coli, most recent products use mammalian cells as production hosts. Not long after the ?rst p- duction of recombinant proteins in E. coli, it was realized that the complex tasks of most post-translational modi?cations on proteins could only be ef?ciently carried out in mammalian cells. In the 1990s, we witnessed a rapid expansion of mammalian-cell-derived protein therapeutics, chie?y antibodies. In fact, it has been nearly a decade since the market value of mammalian-cell-derived protein therapeutics surpassed that of those produced from E. coli. A common characteristic of recent antibody products is the relatively large dose required for effective therapy, demanding larger quantities for the treatment of a given disease. This, coupled with the broadening repertoire of protein drugs, has rapidly expanded the quantity needed for clinical applications. The increasing demand for protein therapeutics has not been met exclusively by construction of new manufacturing plants and increasing total volume capacity. More - portantly the productivity of cell culture processes has been driven upward by an order of magnitude in the past decade.