Download or read book Advanced Power Generation Systems written by Ibrahim Dincer and published by Academic Press. This book was released on 2014-07-15 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Power Generation Systems examines the full range of advanced multiple output thermodynamic cycles that can enable more sustainable and efficient power production from traditional methods, as well as driving the significant gains available from renewable sources. These advanced cycles can harness the by-products of one power generation effort, such as electricity production, to simultaneously create additional energy outputs, such as heat or refrigeration. Gas turbine-based, and industrial waste heat recovery-based combined, cogeneration, and trigeneration cycles are considered in depth, along with Syngas combustion engines, hybrid SOFC/gas turbine engines, and other thermodynamically efficient and environmentally conscious generation technologies. The uses of solar power, biomass, hydrogen, and fuel cells in advanced power generation are considered, within both hybrid and dedicated systems. The detailed energy and exergy analysis of each type of system provided by globally recognized author Dr. Ibrahim Dincer will inform effective and efficient design choices, while emphasizing the pivotal role of new methodologies and models for performance assessment of existing systems. This unique resource gathers information from thermodynamics, fluid mechanics, heat transfer, and energy system design to provide a single-source guide to solving practical power engineering problems. - The only complete source of info on the whole array of multiple output thermodynamic cycles, covering all the design options for environmentally-conscious combined production of electric power, heat, and refrigeration - Offers crucial instruction on realizing more efficiency in traditional power generation systems, and on implementing renewable technologies, including solar, hydrogen, fuel cells, and biomass - Each cycle description clarified through schematic diagrams, and linked to sustainable development scenarios through detailed energy, exergy, and efficiency analyses - Case studies and examples demonstrate how novel systems and performance assessment methods function in practice
Download or read book Comprehensive Energy Systems written by Ibrahim Dincer and published by Elsevier. This book was released on 2018-02-07 with total page 5543 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive Energy Systems, Seven Volume Set provides a unified source of information covering the entire spectrum of energy, one of the most significant issues humanity has to face. This comprehensive book describes traditional and novel energy systems, from single generation to multi-generation, also covering theory and applications. In addition, it also presents high-level coverage on energy policies, strategies, environmental impacts and sustainable development. No other published work covers such breadth of topics in similar depth. High-level sections include Energy Fundamentals, Energy Materials, Energy Production, Energy Conversion, and Energy Management. Offers the most comprehensive resource available on the topic of energy systems Presents an authoritative resource authored and edited by leading experts in the field Consolidates information currently scattered in publications from different research fields (engineering as well as physics, chemistry, environmental sciences and economics), thus ensuring a common standard and language
Download or read book Electric Renewable Energy Systems written by Muhammad H. Rashid and published by Academic Press. This book was released on 2015-11-25 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: - This derivative volume stemming from content included in our seminal Power Electronics Handbook takes its chapters related to renewables and establishes them at the core of a new volume dedicated to the increasingly pivotal and as yet under-published intersection of Power Electronics and Alternative Energy. While this re-versioning provides a corollary revenue stream to better leverage our core handbook asset, it does more than simply re-package existing content. Each chapter will be significantly updated and expanded by more than 50%, and all new introductory and summary chapters will be added to contextualize and tie the volume together. Therefore, unlike traditional derivative volumes, we will be able to offer new and updated material to the market and include this largely original content in our ScienceDirect Energy collection. - Due to the inherently multi-disciplinary nature of renewables, many engineers come from backgrounds in Physics, Materials, or Chemical Engineering, and therefore do not have experience working in-depth with electronics. As more and more alternative and distributed energy systems require grid hook-ups and on-site storage, a working knowledge of batteries, inverters and other power electronics components becomes requisite. Further, as renewables enjoy broadening commercial implementation, power electronics professionals are interested to learn of the challenges and strategies particular to applications in alternative energy. This book will bring each group up-to-speed with the primary issues of importance at this technological node. - This content clarifies the juncture of two key coverage areas for our Energy portfolio: alternative sources and power systems. It serves to bridge the information in our power engineering and renewable energy lists, supporting the growing grid cluster in the former and adding key information on practical implementation to the latter. - Provides a thorough overview of the key technologies, methods and challenges for implementing power electronics in alternative energy systems for optimal power generation - Includes hard-to-find information on how to apply converters, inverters, batteries, controllers and more for stand-alone and grid-connected systems - Covers wind and solar applications, as well as ocean and geothermal energy, hybrid systems and fuel cells
Download or read book Renewable energy conversion systems written by Muhammad Kamran and published by Academic Press. This book was released on 2021-05-15 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Renewable Energy Systems goes beyond theoretical aspects of advances in renewable energy and addresses future trends. By focusing on the design of developing technologies, relevant operation and detailed background and an understanding of the application of power electronics and thermodynamics processes in renewable energy, this book provides an analysis of advancing energy systems. The book will be of interest to engineering graduates, researchers, professors and industry professionals involved in the renewable energy sector and is ideal for advanced engineering courses dealing with renewable energy, sources, thermal and electrical energy production and sustainability. With increasing focus on developing low carbon energy production, audiences need to have the engineering knowledge and practical skills to develop and implement creative solutions to engineering problems encountered with renewable energy technologies. By looking at renewable energy capture and conversion, system design and analysis, project development and implementation, each modular chapter examines recent advances in specific renewable energy systems with detailed methods, calculations and worked examples. - Includes recent techniques used to design and model different renewable energy sources (RES) - Demonstrates how to use power electronics in renewable systems - Discusses how to identify, design, integrate and operate the most suitable technologies through key problems
Download or read book Geothermal Energy Systems written by Ibrahim Dincer and published by Elsevier. This book was released on 2021-03-25 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geothermal Energy Systems provides design and analysis methodologies by using exergy and enhanced exergy tools (covering exergoenvironmental, exergoeconomic, exergetic life cycle assessment, etc.), environmental impact assessment models, and sustainability models and approaches. In addition to presenting newly developed advanced and integrated systems for multigenerational purposes, the book discusses newly developed environmental impact assessment and sustainability evaluation methods and methodologies. With case studies for integrated geothermal energy sources for multigenerational aims, engineers can design and develop new geothermal integrated systems for various applications and discover the main advantages of design choices, system analysis, assessment and development of advanced geothermal power systems. - Explains the ability of geothermal energy power systems to decrease global warming - Discusses sustainable development strategies for using geothermal energy sources - Provides new design conditions for geothermal energy sources-based district energy systems
Download or read book Optimization in Renewable Energy Systems written by Ozan Erdinc and published by Butterworth-Heinemann. This book was released on 2017-02-25 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization in Renewable Energy Systems: Recent Perspectives covers all major areas where optimization techniques have been applied to reduce uncertainty or improve results in renewable energy systems (RES). Production of power with RES is highly variable and unpredictable, leading to the need for optimization-based planning and operation in order to maximize economies while sustaining performance. This self-contained book begins with an introduction to optimization, then covers a wide range of applications in both large and small scale operations, including optimum operation of electric power systems with large penetration of RES, power forecasting, transmission system planning, and DG sizing and siting for distribution and end-user premises. This book is an excellent choice for energy engineers, researchers, system operators, system regulators, and graduate students. - Provides chapters written by experts in the field - Goes beyond forecasting to apply optimization techniques to a wide variety of renewable energy system issues, from large scale to relatively small scale systems - Provides accompanying computer code for related chapters
Download or read book The Essentials of Obstacle Race Training written by Magida, David and published by Human Kinetics. This book was released on 2016-08-29 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive training manual that prepares athletes for the demands of obstacle course racing. From grip strength to balance, exercises and workouts address the unique challenges of this popular sport.
Download or read book Renewable Energy System Design written by Ziyad Salameh and published by Academic Press. This book was released on 2014-05-12 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: The limitation of fossil fuels has challenged scientists and engineers to search for alternative energy resources that can meet future energy demand. Renewable Energy System Design is a valuable reference focusing on engineering, design, and operating principles that engineers can follow in order to successfully design more robust and efficient renewable energy systems. Written by Dr. Ziyad Salameh, an expert with over thirty years of teaching, research, and design experience, Renewable Energy System Design provides readers with the "nuts and bolts" of photovoltaic, wind energy, and hybrid wind/PV systems. It explores renewable energy storage devices with an emphasis on batteries and fuel cells and emerging sustainable technologies like biomass, geothermal power, ocean thermal energy conversion, solar thermal, and satellite power. Renewable Energy System Design is a must-have resource that provides engineers and students with a comprehensive yet practical guide to the characteristics, principles of operation, and power potential of the most prevalent renewable energy systems. - Explains and demonstrates design and operating principles for solar, wind, hybrid and emerging systems with diagrams and examples - Utilizes case studies to help engineers anticipate and overcome common design challenges - Explores renewable energy storage methods particularly batteries and fuel cells and emerging renewable technologies
Download or read book Integrated Energy Systems for Multigeneration written by Ibrahim Dincer and published by Elsevier. This book was released on 2019-09-13 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrated Energy Systems for Multigeneration looks at how measures implemented to limit greenhouse gas emissions must consider smart utilization of available limited resources and employ renewable resources through integrated energy systems and the utilization of waste energy streams. This reference considers the main concepts of thermal and conventional energy systems through detailed systems description, analyses of methodologies, performance assessment and optimization, and illustrative examples and case studies. The book examines producing power and heat with cooling, freshwater, green fuels and other useful commodities designed to tackle rising greenhouse gas emissions in the atmosphere. With worldwide energy demand increasing, and the consequences of meeting supply with current dependency on fossil fuels, investigating and developing sustainable alternatives to the conventional energy systems is a growing concern for global stakeholders. - Analyzes the links between clean energy technologies and achieving sustainable development - Illustrates several examples of design and analysis of integrated energy systems - Discusses performance assessment and optimization - Uses illustrative examples and global case studies to explain methodologies and concepts
Download or read book Handbook of Clean Energy Systems 6 Volume Set written by Jinyue Yan and published by John Wiley & Sons. This book was released on 2015-06-22 with total page 4038 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Clean Energy Systems brings together an international team of experts to present a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems. Consolidating information which is currently scattered across a wide variety of literature sources, the handbook covers a broad range of topics in this interdisciplinary research field including both fossil and renewable energy systems. The development of intelligent energy systems for efficient energy processes and mitigation technologies for the reduction of environmental pollutants is explored in depth, and environmental, social and economic impacts are also addressed. Topics covered include: Volume 1 - Renewable Energy: Biomass resources and biofuel production; Bioenergy Utilization; Solar Energy; Wind Energy; Geothermal Energy; Tidal Energy. Volume 2 - Clean Energy Conversion Technologies: Steam/Vapor Power Generation; Gas Turbines Power Generation; Reciprocating Engines; Fuel Cells; Cogeneration and Polygeneration. Volume 3 - Mitigation Technologies: Carbon Capture; Negative Emissions System; Carbon Transportation; Carbon Storage; Emission Mitigation Technologies; Efficiency Improvements and Waste Management; Waste to Energy. Volume 4 - Intelligent Energy Systems: Future Electricity Markets; Diagnostic and Control of Energy Systems; New Electric Transmission Systems; Smart Grid and Modern Electrical Systems; Energy Efficiency of Municipal Energy Systems; Energy Efficiency of Industrial Energy Systems; Consumer Behaviors; Load Control and Management; Electric Car and Hybrid Car; Energy Efficiency Improvement. Volume 5 - Energy Storage: Thermal Energy Storage; Chemical Storage; Mechanical Storage; Electrochemical Storage; Integrated Storage Systems. Volume 6 - Sustainability of Energy Systems: Sustainability Indicators, Evaluation Criteria, and Reporting; Regulation and Policy; Finance and Investment; Emission Trading; Modeling and Analysis of Energy Systems; Energy vs. Development; Low Carbon Economy; Energy Efficiencies and Emission Reduction. Key features: Comprising over 3,500 pages in 6 volumes, HCES presents a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems, consolidating a wealth of information which is currently scattered across a wide variety of literature sources. In addition to renewable energy systems, HCES also covers processes for the efficient and clean conversion of traditional fuels such as coal, oil and gas, energy storage systems, mitigation technologies for the reduction of environmental pollutants, and the development of intelligent energy systems. Environmental, social and economic impacts of energy systems are also addressed in depth. Published in full colour throughout. Fully indexed with cross referencing within and between all six volumes. Edited by leading researchers from academia and industry who are internationally renowned and active in their respective fields. Published in print and online. The online version is a single publication (i.e. no updates), available for one-time purchase or through annual subscription.
Download or read book Design and Performance Optimization of Renewable Energy Systems written by Mamdouh Assad and published by Academic Press. This book was released on 2021-01-12 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design and Performance Optimization of Renewable Energy Systems provides an integrated discussion of issues relating to renewable energy performance design and optimization using advanced thermodynamic analysis with modern methods to configure major renewable energy plant configurations (solar, geothermal, wind, hydro, PV). Vectors of performance enhancement reviewed include thermodynamics, heat transfer, exergoeconomics and neural network techniques. Source technologies studied range across geothermal power plants, hydroelectric power, solar power towers, linear concentrating PV, parabolic trough solar collectors, grid-tied hybrid solar PV/Fuel cell for freshwater production, and wind energy systems. Finally, nanofluids in renewable energy systems are reviewed and discussed from the heat transfer enhancement perspective. - Reviews the fundamentals of thermodynamics and heat transfer concepts to help engineers overcome design challenges for performance maximization - Explores advanced design and operating principles for solar, geothermal and wind energy systems with diagrams and examples - Combines detailed mathematical modeling with relevant computational analyses, focusing on novel techniques such as artificial neural network analyses - Demonstrates how to maximize overall system performance by achieving synergies in equipment and component efficiency
Download or read book Electrochemical Energy Storage for Renewable Sources and Grid Balancing written by Patrick T. Moseley and published by Newnes. This book was released on 2014-10-27 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electricity from renewable sources of energy is plagued by fluctuations (due to variations in wind strength or the intensity of insolation) resulting in a lack of stability if the energy supplied from such sources is used in 'real time'. An important solution to this problem is to store the energy electrochemically (in a secondary battery or in hydrogen and its derivatives) and to make use of it in a controlled fashion at some time after it has been initially gathered and stored. Electrochemical battery storage systems are the major technologies for decentralized storage systems and hydrogen is the only solution for long-term storage systems to provide energy during extended periods of low wind speeds or solar insolation. Future electricity grid design has to include storage systems as a major component for grid stability and for security of supply. The technology of systems designed to achieve this regulation of the supply of renewable energy, and a survey of the markets that they will serve, is the subject of this book. It includes economic aspects to guide the development of technology in the right direction. - Provides state-of-the-art information on all of the storage systems together with an assessment of competing technologies - Features detailed technical, economic and environmental impact information of different storage systems - Contains information about the challenges that must be faced for batteries and hydrogen-storage to be used in conjunction with a fluctuating (renewable energy) power supply
Download or read book Energy written by Yaşar Demirel and published by Springer. This book was released on 2016-03-16 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: Expanding on the first edition, ‘Energy: Production, Conversion, Storage, Conservation, and Coupling (2nd Ed.)’ provides readers with a practical understanding of the major aspects of energy. It includes extended chapters with revised data and additional practice problems as well as a new chapter examining sustainability and sustainable energy technologies. Like the first edition, it also explores topics such as energy production, conservation of energy, energy storage and energy coupling. Written for students across a range of engineering and science disciplines, it provides a comprehensive study guide. It is particularly suitable for courses in energy technology, sustainable energy technologies and energy conversion & management, and offers an ideal reference text for students, engineers, energy researchers and industry professionals. * Presents a clear introduction to the basic properties, forms and sources of energy * Includes a range of supporting figures, tables and thermodynamic diagrams * Provides course instructors with a solution manual for practice problems
Download or read book Hybrid Energy System Models written by Asmae Berrada and published by Academic Press. This book was released on 2020-12-10 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hybrid Energy System Models presents a number of techniques to model a large variety of hybrid energy systems in all aspects of sizing, design, operation, economic dispatch, optimization and control. The book's authors present a number of new methods to model hybrid energy systems and several renewable energy systems, including photovoltaic, solar plus wind and hydropower, energy storage, and combined heat and power systems. With critical modeling examples, global case studies and techno-economic modeling integrated in every chapter, this book is essential to understanding the development of affordable energy systems globally, particularly from renewable resources. With a detailed overview and a comparison of hybrid energy systems used in different regions, as well as innovative hybrid energy system designs covered, this book is useful for practicing power and energy engineers needing answers for what factors to consider when modeling a hybrid energy system and what tools are available to model hybrid systems. Combines research on several renewable energy systems, energy storage, and combined heat and power systems into a single informative resource on hybrid energy systems Includes significant global case studies of current and novel modeling techniques for comparison Covers numerical simulations of hybrid systems energy modeling and applications
Download or read book Energy Systems Engineering Evaluation and Implementation written by Francis Vanek and published by McGraw Hill Professional. This book was released on 2008-06-15 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Market: energy professionals including analysts, system engineers, mechanical engineers, and electrical engineers Problems and worked-out equations use SI units
Download or read book Energy Production Systems Engineering written by Thomas Howard Blair and published by John Wiley & Sons. This book was released on 2016-11-21 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy Production Systems Engineering presents IEEE, Electrical Apparatus Service Association (EASA), and International Electrotechnical Commission (IEC) standards of engineering systems and equipment in utility electric generation stations. Includes fundamental combustion reaction equations Provides methods for measuring radioactivity and exposure limits Includes IEEE, American Petroleum Institute (API), and National Electrical Manufacturers Association (NEMA) standards for motor applications Introduces the IEEE C37 series of standards, which describe the proper selections and applications of switchgear Describes how to use IEEE 80 to calculate the touch and step potential of a ground grid design This book enables engineers and students to acquire through study the pragmatic knowledge and skills in the field that could take years to acquire through experience alone.
Download or read book Hidden Costs of Energy written by National Research Council and published by National Academies Press. This book was released on 2010-05-26 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite the many benefits of energy, most of which are reflected in energy market prices, the production, distribution, and use of energy causes negative effects. Many of these negative effects are not reflected in energy market prices. When market failures like this occur, there may be a case for government interventions in the form of regulations, taxes, fees, tradable permits, or other instruments that will motivate recognition of these external or hidden costs. The Hidden Costs of Energy defines and evaluates key external costs and benefits that are associated with the production, distribution, and use of energy, but are not reflected in market prices. The damage estimates presented are substantial and reflect damages from air pollution associated with electricity generation, motor vehicle transportation, and heat generation. The book also considers other effects not quantified in dollar amounts, such as damages from climate change, effects of some air pollutants such as mercury, and risks to national security. While not a comprehensive guide to policy, this analysis indicates that major initiatives to further reduce other emissions, improve energy efficiency, or shift to a cleaner electricity generating mix could substantially reduce the damages of external effects. A first step in minimizing the adverse consequences of new energy technologies is to better understand these external effects and damages. The Hidden Costs of Energy will therefore be a vital informational tool for government policy makers, scientists, and economists in even the earliest stages of research and development on energy technologies.