EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Bayesian Methods for Data Analysis  Third Edition

Download or read book Bayesian Methods for Data Analysis Third Edition written by Bradley P. Carlin and published by CRC Press. This book was released on 2008-06-30 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: Broadening its scope to nonstatisticians, Bayesian Methods for Data Analysis, Third Edition provides an accessible introduction to the foundations and applications of Bayesian analysis. Along with a complete reorganization of the material, this edition concentrates more on hierarchical Bayesian modeling as implemented via Markov chain Monte Carlo (MCMC) methods and related data analytic techniques. New to the Third Edition New data examples, corresponding R and WinBUGS code, and homework problems Explicit descriptions and illustrations of hierarchical modeling—now commonplace in Bayesian data analysis A new chapter on Bayesian design that emphasizes Bayesian clinical trials A completely revised and expanded section on ranking and histogram estimation A new case study on infectious disease modeling and the 1918 flu epidemic A solutions manual for qualifying instructors that contains solutions, computer code, and associated output for every homework problem—available both electronically and in print Ideal for Anyone Performing Statistical Analyses Focusing on applications from biostatistics, epidemiology, and medicine, this text builds on the popularity of its predecessors by making it suitable for even more practitioners and students.

Book Bayesian Multivariate Time Series Methods for Empirical Macroeconomics

Download or read book Bayesian Multivariate Time Series Methods for Empirical Macroeconomics written by Gary Koop and published by Now Publishers Inc. This book was released on 2010 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Multivariate Time Series Methods for Empirical Macroeconomics provides a survey of the Bayesian methods used in modern empirical macroeconomics. These models have been developed to address the fact that most questions of interest to empirical macroeconomists involve several variables and must be addressed using multivariate time series methods. Many different multivariate time series models have been used in macroeconomics, but Vector Autoregressive (VAR) models have been among the most popular. Bayesian Multivariate Time Series Methods for Empirical Macroeconomics reviews and extends the Bayesian literature on VARs, TVP-VARs and TVP-FAVARs with a focus on the practitioner. The authors go beyond simply defining each model, but specify how to use them in practice, discuss the advantages and disadvantages of each and offer tips on when and why each model can be used.

Book Bayes and Empirical Bayes Methods for Data Analysis  Second Edition

Download or read book Bayes and Empirical Bayes Methods for Data Analysis Second Edition written by Bradley P. Carlin and published by Chapman and Hall/CRC. This book was released on 2000-06-22 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, Bayes and empirical Bayes (EB) methods have continued to increase in popularity and impact. Building on the first edition of their popular text, Carlin and Louis introduce these methods, demonstrate their usefulness in challenging applied settings, and show how they can be implemented using modern Markov chain Monte Carlo (MCMC) methods. Their presentation is accessible to those new to Bayes and empirical Bayes methods, while providing in-depth coverage valuable to seasoned practitioners. With its broad appeal as a text for those in biomedical science, education, social science, agriculture, and engineering, this second edition offers a relatively gentle and comprehensive introduction for students and practitioners already familiar with more traditional frequentist statistical methods. Focusing on practical tools for data analysis, the book shows how properly structured Bayes and EB procedures typically have good frequentist and Bayesian performance, both in theory and in practice.

Book Time Series Analysis

Download or read book Time Series Analysis written by Henrik Madsen and published by CRC Press. This book was released on 2007-11-28 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: With a focus on analyzing and modeling linear dynamic systems using statistical methods, Time Series Analysis formulates various linear models, discusses their theoretical characteristics, and explores the connections among stochastic dynamic models. Emphasizing the time domain description, the author presents theorems to highlight the most important results, proofs to clarify some results, and problems to illustrate the use of the results for modeling real-life phenomena. The book first provides the formulas and methods needed to adapt a second-order approach for characterizing random variables as well as introduces regression methods and models, including the general linear model. It subsequently covers linear dynamic deterministic systems, stochastic processes, time domain methods where the autocorrelation function is key to identification, spectral analysis, transfer-function models, and the multivariate linear process. The text also describes state space models and recursive and adaptivemethods. The final chapter examines a host of practical problems, including the predictions of wind power production and the consumption of medicine, a scheduling system for oil delivery, and the adaptive modeling of interest rates. Concentrating on the linear aspect of this subject, Time Series Analysis provides an accessible yet thorough introduction to the methods for modeling linear stochastic systems. It will help you understand the relationship between linear dynamic systems and linear stochastic processes.

Book The Analysis of Time Series

Download or read book The Analysis of Time Series written by Chris Chatfield and published by CRC Press. This book was released on 2016-03-30 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since 1975, The Analysis of Time Series: An Introduction has introduced legions of statistics students and researchers to the theory and practice of time series analysis. With each successive edition, bestselling author Chris Chatfield has honed and refined his presentation, updated the material to reflect advances in the field, and presented interesting new data sets. The sixth edition is no exception. It provides an accessible, comprehensive introduction to the theory and practice of time series analysis. The treatment covers a wide range of topics, including ARIMA probability models, forecasting methods, spectral analysis, linear systems, state-space models, and the Kalman filter. It also addresses nonlinear, multivariate, and long-memory models. The author has carefully updated each chapter, added new discussions, incorporated new datasets, and made those datasets available for download from www.crcpress.com. A free online appendix on time series analysis using R can be accessed at http://people.bath.ac.uk/mascc/TSA.usingR.doc. Highlights of the Sixth Edition: A new section on handling real data New discussion on prediction intervals A completely revised and restructured chapter on more advanced topics, with new material on the aggregation of time series, analyzing time series in finance, and discrete-valued time series A new chapter of examples and practical advice Thorough updates and revisions throughout the text that reflect recent developments and dramatic changes in computing practices over the last few years The analysis of time series can be a difficult topic, but as this book has demonstrated for two-and-a-half decades, it does not have to be daunting. The accessibility, polished presentation, and broad coverage of The Analysis of Time Series make it simply the best introduction to the subject available.

Book State Space Methods for Time Series Analysis

Download or read book State Space Methods for Time Series Analysis written by Jose Casals and published by CRC Press. This book was released on 2018-09-03 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: The state-space approach provides a formal framework where any result or procedure developed for a basic model can be seamlessly applied to a standard formulation written in state-space form. Moreover, it can accommodate with a reasonable effort nonstandard situations, such as observation errors, aggregation constraints, or missing in-sample values. Exploring the advantages of this approach, State-Space Methods for Time Series Analysis: Theory, Applications and Software presents many computational procedures that can be applied to a previously specified linear model in state-space form. After discussing the formulation of the state-space model, the book illustrates the flexibility of the state-space representation and covers the main state estimation algorithms: filtering and smoothing. It then shows how to compute the Gaussian likelihood for unknown coefficients in the state-space matrices of a given model before introducing subspace methods and their application. It also discusses signal extraction, describes two algorithms to obtain the VARMAX matrices corresponding to any linear state-space model, and addresses several issues relating to the aggregation and disaggregation of time series. The book concludes with a cross-sectional extension to the classical state-space formulation in order to accommodate longitudinal or panel data. Missing data is a common occurrence here, and the book explains imputation procedures necessary to treat missingness in both exogenous and endogenous variables. Web Resource The authors’ E4 MATLAB® toolbox offers all the computational procedures, administrative and analytical functions, and related materials for time series analysis. This flexible, powerful, and free software tool enables readers to replicate the practical examples in the text and apply the procedures to their own work.

Book Time Series Analysis  Methods and Applications

Download or read book Time Series Analysis Methods and Applications written by and published by Elsevier. This book was released on 2012-05-18 with total page 777 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of statistics not only affects all areas of scientific activity, but also many other matters such as public policy. It is branching rapidly into so many different subjects that a series of handbooks is the only way of comprehensively presenting the various aspects of statistical methodology, applications, and recent developments.The Handbook of Statistics is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with Volume 30 dealing with time series. The series is addressed to the entire community of statisticians and scientists in various disciplines who use statistical methodology in their work. At the same time, special emphasis is placed on applications-oriented techniques, with the applied statistician in mind as the primary audience. - Comprehensively presents the various aspects of statistical methodology - Discusses a wide variety of diverse applications and recent developments - Contributors are internationally renowened experts in their respective areas

Book Large Scale Inference

    Book Details:
  • Author : Bradley Efron
  • Publisher : Cambridge University Press
  • Release : 2012-11-29
  • ISBN : 1139492136
  • Pages : pages

Download or read book Large Scale Inference written by Bradley Efron and published by Cambridge University Press. This book was released on 2012-11-29 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: We live in a new age for statistical inference, where modern scientific technology such as microarrays and fMRI machines routinely produce thousands and sometimes millions of parallel data sets, each with its own estimation or testing problem. Doing thousands of problems at once is more than repeated application of classical methods. Taking an empirical Bayes approach, Bradley Efron, inventor of the bootstrap, shows how information accrues across problems in a way that combines Bayesian and frequentist ideas. Estimation, testing and prediction blend in this framework, producing opportunities for new methodologies of increased power. New difficulties also arise, easily leading to flawed inferences. This book takes a careful look at both the promise and pitfalls of large-scale statistical inference, with particular attention to false discovery rates, the most successful of the new statistical techniques. Emphasis is on the inferential ideas underlying technical developments, illustrated using a large number of real examples.

Book Bayesian Time Series Models

Download or read book Bayesian Time Series Models written by David Barber and published by Cambridge University Press. This book was released on 2011-08-11 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first unified treatment of time series modelling techniques spanning machine learning, statistics, engineering and computer science.

Book Bayesian Data Analysis  Third Edition

Download or read book Bayesian Data Analysis Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Book Research in Progress

Download or read book Research in Progress written by and published by . This book was released on 1975 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Time Series Models

Download or read book Time Series Models written by D.R. Cox and published by CRC Press. This book was released on 2020-11-26 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: The analysis prediction and interpolation of economic and other time series has a long history and many applications. Major new developments are taking place, driven partly by the need to analyze financial data. The five papers in this book describe those new developments from various viewpoints and are intended to be an introduction accessible to readers from a range of backgrounds. The book arises out of the second Seminaire European de Statistique (SEMSTAT) held in Oxford in December 1994. This brought together young statisticians from across Europe, and a series of introductory lectures were given on topics at the forefront of current research activity. The lectures form the basis for the five papers contained in the book. The papers by Shephard and Johansen deal respectively with time series models for volatility, i.e. variance heterogeneity, and with cointegration. Clements and Hendry analyze the nature of prediction errors. A complementary review paper by Laird gives a biometrical view of the analysis of short time series. Finally Astrup and Nielsen give a mathematical introduction to the study of option pricing. Whilst the book draws its primary motivation from financial series and from multivariate econometric modelling, the applications are potentially much broader.

Book Generalized Additive Models

Download or read book Generalized Additive Models written by Simon N. Wood and published by CRC Press. This book was released on 2006-02-27 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in widespread use, generalized additive models (GAMs) have evolved into a standard statistical methodology of considerable flexibility. While Hastie and Tibshirani's outstanding 1990 research monograph on GAMs is largely responsible for this, there has been a long-standing need for an accessible introductory treatment of the subject that also e

Book Markov Chain Monte Carlo

Download or read book Markov Chain Monte Carlo written by Dani Gamerman and published by CRC Press. This book was released on 2006-05-10 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: While there have been few theoretical contributions on the Markov Chain Monte Carlo (MCMC) methods in the past decade, current understanding and application of MCMC to the solution of inference problems has increased by leaps and bounds. Incorporating changes in theory and highlighting new applications, Markov Chain Monte Carlo: Stochastic Simul

Book Introduction to Probability with R

Download or read book Introduction to Probability with R written by Kenneth Baclawski and published by CRC Press. This book was released on 2008-01-24 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on a popular course taught by the late Gian-Carlo Rota of MIT, with many new topics covered as well, Introduction to Probability with R presents R programs and animations to provide an intuitive yet rigorous understanding of how to model natural phenomena from a probabilistic point of view. Although the R programs are small in length, they are just as sophisticated and powerful as longer programs in other languages. This brevity makes it easy for students to become proficient in R. This calculus-based introduction organizes the material around key themes. One of the most important themes centers on viewing probability as a way to look at the world, helping students think and reason probabilistically. The text also shows how to combine and link stochastic processes to form more complex processes that are better models of natural phenomena. In addition, it presents a unified treatment of transforms, such as Laplace, Fourier, and z; the foundations of fundamental stochastic processes using entropy and information; and an introduction to Markov chains from various viewpoints. Each chapter includes a short biographical note about a contributor to probability theory, exercises, and selected answers. The book has an accompanying website with more information.

Book Statistical Models and Methods for Financial Markets

Download or read book Statistical Models and Methods for Financial Markets written by Tze Leung Lai and published by Springer Science & Business Media. This book was released on 2008-09-08 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: The idea of writing this bookarosein 2000when the ?rst author wasassigned to teach the required course STATS 240 (Statistical Methods in Finance) in the new M. S. program in ?nancial mathematics at Stanford, which is an interdisciplinary program that aims to provide a master’s-level education in applied mathematics, statistics, computing, ?nance, and economics. Students in the programhad di?erent backgroundsin statistics. Some had only taken a basic course in statistical inference, while others had taken a broad spectrum of M. S. - and Ph. D. -level statistics courses. On the other hand, all of them had already taken required core courses in investment theory and derivative pricing, and STATS 240 was supposed to link the theory and pricing formulas to real-world data and pricing or investment strategies. Besides students in theprogram,thecoursealso attractedmanystudentsfromother departments in the university, further increasing the heterogeneity of students, as many of them had a strong background in mathematical and statistical modeling from the mathematical, physical, and engineering sciences but no previous experience in ?nance. To address the diversity in background but common strong interest in the subject and in a potential career as a “quant” in the ?nancialindustry,thecoursematerialwascarefullychosennotonlytopresent basic statistical methods of importance to quantitative ?nance but also to summarize domain knowledge in ?nance and show how it can be combined with statistical modeling in ?nancial analysis and decision making. The course material evolved over the years, especially after the second author helped as the head TA during the years 2004 and 2005.

Book Extending the Linear Model with R

Download or read book Extending the Linear Model with R written by Julian J. Faraway and published by CRC Press. This book was released on 2016-02-10 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway's critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author's treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the data described in the book is available at http://people.bath.ac.uk/jjf23/ELM/ Statisticians need to be familiar with a broad range of ideas and techniques. This book provides a well-stocked toolbox of methodologies, and with its unique presentation of these very modern statistical techniques, holds the potential to break new ground in the way graduate-level courses in this area are taught.