Download or read book Large Scale Inference written by Bradley Efron and published by Cambridge University Press. This book was released on 2012-11-29 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: We live in a new age for statistical inference, where modern scientific technology such as microarrays and fMRI machines routinely produce thousands and sometimes millions of parallel data sets, each with its own estimation or testing problem. Doing thousands of problems at once is more than repeated application of classical methods. Taking an empirical Bayes approach, Bradley Efron, inventor of the bootstrap, shows how information accrues across problems in a way that combines Bayesian and frequentist ideas. Estimation, testing and prediction blend in this framework, producing opportunities for new methodologies of increased power. New difficulties also arise, easily leading to flawed inferences. This book takes a careful look at both the promise and pitfalls of large-scale statistical inference, with particular attention to false discovery rates, the most successful of the new statistical techniques. Emphasis is on the inferential ideas underlying technical developments, illustrated using a large number of real examples.
Download or read book Bayesian Methods for Data Analysis Third Edition written by Bradley P. Carlin and published by CRC Press. This book was released on 2008-06-30 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: Broadening its scope to nonstatisticians, Bayesian Methods for Data Analysis, Third Edition provides an accessible introduction to the foundations and applications of Bayesian analysis. Along with a complete reorganization of the material, this edition concentrates more on hierarchical Bayesian modeling as implemented via Markov chain Monte Carlo (MCMC) methods and related data analytic techniques. New to the Third Edition New data examples, corresponding R and WinBUGS code, and homework problems Explicit descriptions and illustrations of hierarchical modeling—now commonplace in Bayesian data analysis A new chapter on Bayesian design that emphasizes Bayesian clinical trials A completely revised and expanded section on ranking and histogram estimation A new case study on infectious disease modeling and the 1918 flu epidemic A solutions manual for qualifying instructors that contains solutions, computer code, and associated output for every homework problem—available both electronically and in print Ideal for Anyone Performing Statistical Analyses Focusing on applications from biostatistics, epidemiology, and medicine, this text builds on the popularity of its predecessors by making it suitable for even more practitioners and students.
Download or read book Empirical Bayes and Likelihood Inference written by S.E. Ahmed and published by Springer Science & Business Media. This book was released on 2001 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian and such approaches to inference have a number of points of close contact, especially from an asymptotic point of view. Both emphasize the construction of interval estimates of unknown parameters. In this volume, researchers present recent work on several aspects of Bayesian, likelihood and empirical Bayes methods, presented at a workshop held in Montreal, Canada. The goal of the workshop was to explore the linkages among the methods, and to suggest new directions for research in the theory of inference.
Download or read book The Analysis of Gene Expression Data written by Giovanni Parmigiani and published by Springer Science & Business Media. This book was released on 2006-04-11 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents practical approaches for the analysis of data from gene expression micro-arrays. It describes the conceptual and methodological underpinning for a statistical tool and its implementation in software. The book includes coverage of various packages that are part of the Bioconductor project and several related R tools. The materials presented cover a range of software tools designed for varied audiences.
Download or read book Data Gathering Analysis and Protection of Privacy Through Randomized Response Techniques Qualitative and Quantitative Human Traits written by and published by Elsevier. This book was released on 2016-04-20 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Gathering, Analysis and Protection of Privacy through Randomized Response Techniques: Qualitative and Quantitative Human Traits tackles how to gather and analyze data relating to stigmatizing human traits. S.L. Warner invented RRT and published it in JASA, 1965. In the 50 years since, the subject has grown tremendously, with continued growth. This book comprehensively consolidates the literature to commemorate the inception of RR. - Brings together all relevant aspects of randomized response and indirect questioning - Tackles how to gather and analyze data relating to stigmatizing human traits - Gives an encyclopedic coverage of the topic - Covers recent developments and extrapolates to future trends
Download or read book Genomics Data Analysis written by David R. Bickel and published by CRC Press. This book was released on 2019-09-24 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statisticians have met the need to test hundreds or thousands of genomics hypotheses simultaneously with novel empirical Bayes methods that combine advantages of traditional Bayesian and frequentist statistics. Techniques for estimating the local false discovery rate assign probabilities of differential gene expression, genetic association, etc. without requiring subjective prior distributions. This book brings these methods to scientists while keeping the mathematics at an elementary level. Readers will learn the fundamental concepts behind local false discovery rates, preparing them to analyze their own genomics data and to critically evaluate published genomics research. Key Features: * dice games and exercises, including one using interactive software, for teaching the concepts in the classroom * examples focusing on gene expression and on genetic association data and briefly covering metabolomics data and proteomics data * gradual introduction to the mathematical equations needed * how to choose between different methods of multiple hypothesis testing * how to convert the output of genomics hypothesis testing software to estimates of local false discovery rates * guidance through the minefield of current criticisms of p values * material on non-Bayesian prior p values and posterior p values not previously published
Download or read book Variance Components written by Shayle R. Searle and published by John Wiley & Sons. This book was released on 2009-09-25 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. ". . .Variance Components is an excellent book. It is organized and well written, and provides many references to a variety of topics. I recommend it to anyone with interest in linear models." —Journal of the American Statistical Association "This book provides a broad coverage of methods for estimating variance components which appeal to students and research workers . . . The authors make an outstanding contribution to teaching and research in the field of variance component estimation." —Mathematical Reviews "The authors have done an excellent job in collecting materials on a broad range of topics. Readers will indeed gain from using this book . . . I must say that the authors have done a commendable job in their scholarly presentation." —Technometrics This book focuses on summarizing the variability of statistical data known as the analysis of variance table. Penned in a readable style, it provides an up-to-date treatment of research in the area. The book begins with the history of analysis of variance and continues with discussions of balanced data, analysis of variance for unbalanced data, predictions of random variables, hierarchical models and Bayesian estimation, binary and discrete data, and the dispersion mean model.
Download or read book Bayes and Empirical Bayes Methods for Data Analysis Second Edition written by Bradley P. Carlin and published by Chapman and Hall/CRC. This book was released on 2000-06-22 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, Bayes and empirical Bayes (EB) methods have continued to increase in popularity and impact. Building on the first edition of their popular text, Carlin and Louis introduce these methods, demonstrate their usefulness in challenging applied settings, and show how they can be implemented using modern Markov chain Monte Carlo (MCMC) methods. Their presentation is accessible to those new to Bayes and empirical Bayes methods, while providing in-depth coverage valuable to seasoned practitioners. With its broad appeal as a text for those in biomedical science, education, social science, agriculture, and engineering, this second edition offers a relatively gentle and comprehensive introduction for students and practitioners already familiar with more traditional frequentist statistical methods. Focusing on practical tools for data analysis, the book shows how properly structured Bayes and EB procedures typically have good frequentist and Bayesian performance, both in theory and in practice.
Download or read book Empirical Bayes Methods written by J. S. Maritz and published by Routledge. This book was released on 2018-03-05 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published in 1970; with a second edition in 1989. Empirical Bayes methods use some of the apparatus of the pure Bayes approach, but an actual prior distribution is assumed to generate the data sequence. It can be estimated thus producing empirical Bayes estimates or decision rules. In this second edition, details are provided of the derivation and the performance of empirical Bayes rules for a variety of special models. Attention is given to the problem of assessing the goodness of an empirical Bayes estimator for a given set of prior data. Chapters also focus on alternatives to the empirical Bayes approach and actual applications of empirical Bayes methods.
Download or read book Bayesian Data Analysis Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Download or read book Applied Statistical Inference written by Leonhard Held and published by Springer Science & Business Media. This book was released on 2013-11-12 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers modern statistical inference based on likelihood with applications in medicine, epidemiology and biology. Two introductory chapters discuss the importance of statistical models in applied quantitative research and the central role of the likelihood function. The rest of the book is divided into three parts. The first describes likelihood-based inference from a frequentist viewpoint. Properties of the maximum likelihood estimate, the score function, the likelihood ratio and the Wald statistic are discussed in detail. In the second part, likelihood is combined with prior information to perform Bayesian inference. Topics include Bayesian updating, conjugate and reference priors, Bayesian point and interval estimates, Bayesian asymptotics and empirical Bayes methods. Modern numerical techniques for Bayesian inference are described in a separate chapter. Finally two more advanced topics, model choice and prediction, are discussed both from a frequentist and a Bayesian perspective. A comprehensive appendix covers the necessary prerequisites in probability theory, matrix algebra, mathematical calculus, and numerical analysis.
Download or read book Small Area Estimation written by J. N. K. Rao and published by John Wiley & Sons. This book was released on 2005-02-25 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to indirect estimation methods, both traditional and model-based. Readers will also find the latest methods for measuring the variability of the estimates as well as the techniques for model validation. Uses a basic area-level linear model to illustrate the methods Presents the various extensions including binary response data through generalized linear models and time series data through linear models that combine cross-sectional and time series features Provides recent applications of SAE including several in U.S. Federal programs Offers a comprehensive discussion of the design issues that impact SAE
Download or read book Bayesian Statistical Methods written by Brian J. Reich and published by CRC Press. This book was released on 2019-04-12 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Statistical Methods provides data scientists with the foundational and computational tools needed to carry out a Bayesian analysis. This book focuses on Bayesian methods applied routinely in practice including multiple linear regression, mixed effects models and generalized linear models (GLM). The authors include many examples with complete R code and comparisons with analogous frequentist procedures. In addition to the basic concepts of Bayesian inferential methods, the book covers many general topics: Advice on selecting prior distributions Computational methods including Markov chain Monte Carlo (MCMC) Model-comparison and goodness-of-fit measures, including sensitivity to priors Frequentist properties of Bayesian methods Case studies covering advanced topics illustrate the flexibility of the Bayesian approach: Semiparametric regression Handling of missing data using predictive distributions Priors for high-dimensional regression models Computational techniques for large datasets Spatial data analysis The advanced topics are presented with sufficient conceptual depth that the reader will be able to carry out such analysis and argue the relative merits of Bayesian and classical methods. A repository of R code, motivating data sets, and complete data analyses are available on the book’s website. Brian J. Reich, Associate Professor of Statistics at North Carolina State University, is currently the editor-in-chief of the Journal of Agricultural, Biological, and Environmental Statistics and was awarded the LeRoy & Elva Martin Teaching Award. Sujit K. Ghosh, Professor of Statistics at North Carolina State University, has over 22 years of research and teaching experience in conducting Bayesian analyses, received the Cavell Brownie mentoring award, and served as the Deputy Director at the Statistical and Applied Mathematical Sciences Institute.
Download or read book Doing Meta Analysis with R written by Mathias Harrer and published by CRC Press. This book was released on 2021-09-15 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Doing Meta-Analysis with R: A Hands-On Guide serves as an accessible introduction on how meta-analyses can be conducted in R. Essential steps for meta-analysis are covered, including calculation and pooling of outcome measures, forest plots, heterogeneity diagnostics, subgroup analyses, meta-regression, methods to control for publication bias, risk of bias assessments and plotting tools. Advanced but highly relevant topics such as network meta-analysis, multi-three-level meta-analyses, Bayesian meta-analysis approaches and SEM meta-analysis are also covered. A companion R package, dmetar, is introduced at the beginning of the guide. It contains data sets and several helper functions for the meta and metafor package used in the guide. The programming and statistical background covered in the book are kept at a non-expert level, making the book widely accessible. Features • Contains two introductory chapters on how to set up an R environment and do basic imports/manipulations of meta-analysis data, including exercises • Describes statistical concepts clearly and concisely before applying them in R • Includes step-by-step guidance through the coding required to perform meta-analyses, and a companion R package for the book
Download or read book Current Trends in Bayesian Methodology with Applications written by Satyanshu K. Upadhyay and published by CRC Press. This book was released on 2015-05-21 with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collecting Bayesian material scattered throughout the literature, Current Trends in Bayesian Methodology with Applications examines the latest methodological and applied aspects of Bayesian statistics. The book covers biostatistics, econometrics, reliability and risk analysis, spatial statistics, image analysis, shape analysis, Bayesian computation, clustering, uncertainty assessment, high-energy astrophysics, neural networking, fuzzy information, objective Bayesian methodologies, empirical Bayes methods, small area estimation, and many more topics. Each chapter is self-contained and focuses on a Bayesian methodology. It gives an overview of the area, presents theoretical insights, and emphasizes applications through motivating examples. This book reflects the diversity of Bayesian analysis, from novel Bayesian methodology, such as nonignorable response and factor analysis, to state-of-the-art applications in economics, astrophysics, biomedicine, oceanography, and other areas. It guides readers in using Bayesian techniques for a range of statistical analyses.
Download or read book Bayesian Data Analysis Second Edition written by Andrew Gelman and published by CRC Press. This book was released on 2003-07-29 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incorporating new and updated information, this second edition of THE bestselling text in Bayesian data analysis continues to emphasize practice over theory, describing how to conceptualize, perform, and critique statistical analyses from a Bayesian perspective. Its world-class authors provide guidance on all aspects of Bayesian data analysis and include examples of real statistical analyses, based on their own research, that demonstrate how to solve complicated problems. Changes in the new edition include: Stronger focus on MCMC Revision of the computational advice in Part III New chapters on nonlinear models and decision analysis Several additional applied examples from the authors' recent research Additional chapters on current models for Bayesian data analysis such as nonlinear models, generalized linear mixed models, and more Reorganization of chapters 6 and 7 on model checking and data collection Bayesian computation is currently at a stage where there are many reasonable ways to compute any given posterior distribution. However, the best approach is not always clear ahead of time. Reflecting this, the new edition offers a more pluralistic presentation, giving advice on performing computations from many perspectives while making clear the importance of being aware that there are different ways to implement any given iterative simulation computation. The new approach, additional examples, and updated information make Bayesian Data Analysis an excellent introductory text and a reference that working scientists will use throughout their professional life.
Download or read book Strategic Management Decision Theory and Decision Science written by Bikas Kumar Sinha and published by Springer Nature. This book was released on 2021-08-31 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains international perspectives that unifies the themes of strategic management, decision theory, and data science. It contains thought-provoking presentations of case studies backed by adequate analysis adding significance to the discussions. Most of the decision-making models in use do take due advantage of collection and processing of relevant data using appropriate analytics oriented to provide inputs into effective decision-making. The book showcases applications in diverse fields including banking and insurance, portfolio management, inventory analysis, performance assessment of comparable economic agents, managing utilities in a health-care facility, reducing traffic snarls on highways, monitoring achievement of some of the sustainable development goals in a country or state, and similar other areas that showcase policy implications. It holds immense value for researchers as well as professionals responsible for organizational decisions.