Download or read book The Elementary Differential Geometry of Plane Curves written by Ralph Howard Fowler and published by . This book was released on 1920 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Elementary Differential Geometry written by and published by . This book was released on 2000 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Elementary Differential Geometry written by A.N. Pressley and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pressley assumes the reader knows the main results of multivariate calculus and concentrates on the theory of the study of surfaces. Used for courses on surface geometry, it includes intersting and in-depth examples and goes into the subject in great detail and vigour. The book will cover three-dimensional Euclidean space only, and takes the whole book to cover the material and treat it as a subject in its own right.
Download or read book The Elementary Differential Geometry of Plane Curves written by Ralph Howard Fowler and published by . This book was released on 1920 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Elementary Geometry of Differentiable Curves written by C. G. Gibson and published by Cambridge University Press. This book was released on 2001-05-17 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introductory text on the differential geometry of plane curves.
Download or read book Elementary Topics in Differential Geometry written by J. A. Thorpe and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleges. This has been brought about by the introduction of linear algebra into the curriculum at the sophomore level. The advantages of using linear algebra both in the teaching of differential equations and in the teaching of multivariate calculus are by now widely recognized. Several textbooks adopting this point of view are now available and have been widely adopted. Students completing the sophomore year now have a fair preliminary under standing of spaces of many dimensions. It should be apparent that courses on the junior level should draw upon and reinforce the concepts and skills learned during the previous year. Unfortunately, in differential geometry at least, this is usually not the case. Textbooks directed to students at this level generally restrict attention to 2-dimensional surfaces in 3-space rather than to surfaces of arbitrary dimension. Although most of the recent books do use linear algebra, it is only the algebra of ~3. The student's preliminary understanding of higher dimensions is not cultivated.
Download or read book Elementary Differential Geometry written by A.N. Pressley and published by Springer Science & Business Media. This book was released on 2010-03-10 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elementary Differential Geometry presents the main results in the differential geometry of curves and surfaces suitable for a first course on the subject. Prerequisites are kept to an absolute minimum – nothing beyond first courses in linear algebra and multivariable calculus – and the most direct and straightforward approach is used throughout. New features of this revised and expanded second edition include: a chapter on non-Euclidean geometry, a subject that is of great importance in the history of mathematics and crucial in many modern developments. The main results can be reached easily and quickly by making use of the results and techniques developed earlier in the book. Coverage of topics such as: parallel transport and its applications; map colouring; holonomy and Gaussian curvature. Around 200 additional exercises, and a full solutions manual for instructors, available via www.springer.com ul
Download or read book Elementary Differential Geometry written by Christian Bär and published by Cambridge University Press. This book was released on 2010-05-06 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: This easy-to-read introduction takes the reader from elementary problems through to current research. Ideal for courses and self-study.
Download or read book Modern Differential Geometry of Curves and Surfaces with Mathematica written by Elsa Abbena and published by CRC Press. This book was released on 2017-09-06 with total page 1024 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting theory while using Mathematica in a complementary way, Modern Differential Geometry of Curves and Surfaces with Mathematica, the third edition of Alfred Gray’s famous textbook, covers how to define and compute standard geometric functions using Mathematica for constructing new curves and surfaces from existing ones. Since Gray’s death, authors Abbena and Salamon have stepped in to bring the book up to date. While maintaining Gray's intuitive approach, they reorganized the material to provide a clearer division between the text and the Mathematica code and added a Mathematica notebook as an appendix to each chapter. They also address important new topics, such as quaternions. The approach of this book is at times more computational than is usual for a book on the subject. For example, Brioshi’s formula for the Gaussian curvature in terms of the first fundamental form can be too complicated for use in hand calculations, but Mathematica handles it easily, either through computations or through graphing curvature. Another part of Mathematica that can be used effectively in differential geometry is its special function library, where nonstandard spaces of constant curvature can be defined in terms of elliptic functions and then plotted. Using the techniques described in this book, readers will understand concepts geometrically, plotting curves and surfaces on a monitor and then printing them. Containing more than 300 illustrations, the book demonstrates how to use Mathematica to plot many interesting curves and surfaces. Including as many topics of the classical differential geometry and surfaces as possible, it highlights important theorems with many examples. It includes 300 miniprograms for computing and plotting various geometric objects, alleviating the drudgery of computing things such as the curvature and torsion of a curve in space.
Download or read book Lectures on Classical Differential Geometry written by Dirk J. Struik and published by Courier Corporation. This book was released on 2012-04-26 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elementary, yet authoritative and scholarly, this book offers an excellent brief introduction to the classical theory of differential geometry. It is aimed at advanced undergraduate and graduate students who will find it not only highly readable but replete with illustrations carefully selected to help stimulate the student's visual understanding of geometry. The text features an abundance of problems, most of which are simple enough for class use, and often convey an interesting geometrical fact. A selection of more difficult problems has been included to challenge the ambitious student. Written by a noted mathematician and historian of mathematics, this volume presents the fundamental conceptions of the theory of curves and surfaces and applies them to a number of examples. Dr. Struik has enhanced the treatment with copious historical, biographical, and bibliographical references that place the theory in context and encourage the student to consult original sources and discover additional important ideas there. For this second edition, Professor Struik made some corrections and added an appendix with a sketch of the application of Cartan's method of Pfaffians to curve and surface theory. The result was to further increase the merit of this stimulating, thought-provoking text — ideal for classroom use, but also perfectly suited for self-study. In this attractive, inexpensive paperback edition, it belongs in the library of any mathematician or student of mathematics interested in differential geometry.
Download or read book Differential Geometry of Curves and Surfaces written by Shoshichi Kobayashi and published by Springer Nature. This book was released on 2019-11-13 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a posthumous publication of a classic by Prof. Shoshichi Kobayashi, who taught at U.C. Berkeley for 50 years, recently translated by Eriko Shinozaki Nagumo and Makiko Sumi Tanaka. There are five chapters: 1. Plane Curves and Space Curves; 2. Local Theory of Surfaces in Space; 3. Geometry of Surfaces; 4. Gauss–Bonnet Theorem; and 5. Minimal Surfaces. Chapter 1 discusses local and global properties of planar curves and curves in space. Chapter 2 deals with local properties of surfaces in 3-dimensional Euclidean space. Two types of curvatures — the Gaussian curvature K and the mean curvature H —are introduced. The method of the moving frames, a standard technique in differential geometry, is introduced in the context of a surface in 3-dimensional Euclidean space. In Chapter 3, the Riemannian metric on a surface is introduced and properties determined only by the first fundamental form are discussed. The concept of a geodesic introduced in Chapter 2 is extensively discussed, and several examples of geodesics are presented with illustrations. Chapter 4 starts with a simple and elegant proof of Stokes’ theorem for a domain. Then the Gauss–Bonnet theorem, the major topic of this book, is discussed at great length. The theorem is a most beautiful and deep result in differential geometry. It yields a relation between the integral of the Gaussian curvature over a given oriented closed surface S and the topology of S in terms of its Euler number χ(S). Here again, many illustrations are provided to facilitate the reader’s understanding. Chapter 5, Minimal Surfaces, requires some elementary knowledge of complex analysis. However, the author retained the introductory nature of this book and focused on detailed explanations of the examples of minimal surfaces given in Chapter 2.
Download or read book The Elementary Differential Geometry of Plane Curves written by R. H. Fowler and published by Forgotten Books. This book was released on 2015-06-12 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: Excerpt from The Elementary Differential Geometry of Plane Curves This tract is intended to present a precise account of the elementary differential properties of plane curves. The matter contained is in no sense new, but a suitable connected treatment in the English language has not been available. As a result, a number of interesting misconceptions are current in English text books. It is sufficient to mention two somewhat striking examples, (a) According to the ordinary definition of an envelope, as the locus of the limits of points of intersection of neighbouring curves, a curve is not the envelope of its circles of curvature, for neighbouring circles of curvature do not intersect. (b) The definitions of an asymptote - (1) a straight line, the distance from which of a point on the curve tends to zero as the point tends to infinity; (2) the limit of a tangent to the curve, whose point of contact tends to infinity - are not equivalent. The curve may have an asymptote according to the former definition, and the tangent may exist at every point, but have no limit as its point of contact tends to infinity. The subjects dealt with, and the general method of treatment, are similar to those of the usual chapters on geometry in any Cours d' Analyse, except that in general plane curves alone are considered. At the same time extensions to three dimensions are made in a somewhat arbitrary selection of places, where the extension is immediate, and forms a natural commentary on the two dimensional work, or presents special points of interest (Frenet's formulae). To make such extensions systematically would make the tract too long. The subject matter being wholly classical, no attempt has been made to give full references to sources of information; the reader however is referred at most stages to the analogous treatment of the subject in the Cours or Traite d' Analyse of de la Vallée Poussin, Goursat, Jordan or Picard, works to which the author is much indebted. About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.
Download or read book Differential Geometry of Curves and Surfaces written by Victor Andreevich Toponogov and published by Springer Science & Business Media. This book was released on 2006-09-10 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: Central topics covered include curves, surfaces, geodesics, intrinsic geometry, and the Alexandrov global angle comparision theorem Many nontrivial and original problems (some with hints and solutions) Standard theoretical material is combined with more difficult theorems and complex problems, while maintaining a clear distinction between the two levels
Download or read book Elementary Differential Geometry Revised 2nd Edition written by Barrett O'Neill and published by Elsevier. This book was released on 2006-05-16 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written primarily for students who have completed the standard first courses in calculus and linear algebra, Elementary Differential Geometry, Revised 2nd Edition, provides an introduction to the geometry of curves and surfaces. The Second Edition maintained the accessibility of the first, while providing an introduction to the use of computers and expanding discussion on certain topics. Further emphasis was placed on topological properties, properties of geodesics, singularities of vector fields, and the theorems of Bonnet and Hadamard. This revision of the Second Edition provides a thorough update of commands for the symbolic computation programs Mathematica or Maple, as well as additional computer exercises. As with the Second Edition, this material supplements the content but no computer skill is necessary to take full advantage of this comprehensive text. - Over 36,000 copies sold worldwide - Accessible, practical yet rigorous approach to a complex topic--also suitable for self-study - Extensive update of appendices on Mathematica and Maple software packages - Thorough streamlining of second edition's numbering system - Fuller information on solutions to odd-numbered problems - Additional exercises and hints guide students in using the latest computer modeling tools
Download or read book Elementary Differential Geometry written by Barrett O'Neill and published by Academic Press. This book was released on 2014-05-12 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elementary Differential Geometry focuses on the elementary account of the geometry of curves and surfaces. The book first offers information on calculus on Euclidean space and frame fields. Topics include structural equations, connection forms, frame fields, covariant derivatives, Frenet formulas, curves, mappings, tangent vectors, and differential forms. The publication then examines Euclidean geometry and calculus on a surface. Discussions focus on topological properties of surfaces, differential forms on a surface, integration of forms, differentiable functions and tangent vectors, congruence of curves, derivative map of an isometry, and Euclidean geometry. The manuscript takes a look at shape operators, geometry of surfaces in E, and Riemannian geometry. Concerns include geometric surfaces, covariant derivative, curvature and conjugate points, Gauss-Bonnet theorem, fundamental equations, global theorems, isometries and local isometries, orthogonal coordinates, and integration and orientation. The text is a valuable reference for students interested in elementary differential geometry.
Download or read book Differential Geometry written by Heinrich W. Guggenheimer and published by Courier Corporation. This book was released on 2012-04-27 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text contains an elementary introduction to continuous groups and differential invariants; an extensive treatment of groups of motions in euclidean, affine, and riemannian geometry; more. Includes exercises and 62 figures.
Download or read book Introduction to Differential Geometry written by Joel W. Robbin and published by Springer Nature. This book was released on 2022-01-12 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.