EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Electronic Structure of Strongly Correlated Materials

Download or read book Electronic Structure of Strongly Correlated Materials written by Vladimir Anisimov and published by Springer Science & Business Media. This book was released on 2010-07-23 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics.

Book Electronic Structure of Strongly Correlated Materials

Download or read book Electronic Structure of Strongly Correlated Materials written by Vladimir Anisimov and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics.

Book Electronic Structure of Strongly Correlated Materials

Download or read book Electronic Structure of Strongly Correlated Materials written by Andreas Robert Flesch and published by . This book was released on 2013 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Lectures on the Physics of Strongly Correlated Systems XIV

Download or read book Lectures on the Physics of Strongly Correlated Systems XIV written by Adolfo Avella and published by American Institute of Physics. This book was released on 2011-01-21 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume contains the lectures delivered at the XIV Training Course in the Physics of Strongly Correlated Systems, held in Vietri sul Mare (Salerno) Italy, in October 2009. The project of the meeting was to promote the formation of young scientists by means of training through research. These features are reflected in the book: the lectures are up-to-date monographs of relevant subjects in the field of Condensed Matter Physics. Contributions include: Electronic Structure of Strongly Correlated Materials (Electronic structure calculations in one-electron approximation; Hubbard model in Dynamical Mean-Field Theory (DMFT); Electronic structure calculations for real materials by LDA+DMFT method); Computational Studies of Quantum Spin Systems (Quantum spin models, their ground states and quantum phase transitions; Classical phase transitions, Monte Carlo simulations, and finite-size scaling; Exact diagonalization methods; Quantum Monte Carlo simulations and the Stochastic Series Expansion method; Survey of related computational methods); Dynamical Mean-Field Theory of Electronic Correlations in Models and Materials (Mean-field theories for many-body systems; Lattice fermions in the limit of high dimensions; Dynamical mean-field theory for correlated lattice fermions; The Mott-Hubbard Metal-Insulator Transition; Electronic correlations and disorder; Theory of electronic correlations in materials; Kinks in the dispersion of strongly correlated electron systems).

Book Strong Coulomb Correlations in Electronic Structure Calculations

Download or read book Strong Coulomb Correlations in Electronic Structure Calculations written by Vladimir I Anisimov and published by CRC Press. This book was released on 2000-05-30 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Materials where electrons show nearly localized rather than itinerant behaviour, such as the high-temperature superconducting copper oxides, or manganate oxides, are attracting interest due to their physical properties and potential applications. For these materials, the interaction between electrons, or electron correlation, plays an important role in describing their electronic strucuture, and the standard methods for the calculation of their electronic spectra based on the local density approximation (LDA) breakdown. This is the first attempt to describe recent approaches that go beyond the concept of the LDA, to successfully describe the electronic structure of narrow-band materials.

Book Theoretical Study of Strongly Correlated Materials

Download or read book Theoretical Study of Strongly Correlated Materials written by Quan Yin and published by . This book was released on 2009-07 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Theoretical Methods for Strongly Correlated Electrons

Download or read book Theoretical Methods for Strongly Correlated Electrons written by David Sénéchal and published by Springer Science & Business Media. This book was released on 2006-05-09 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on the purely theoretical aspects of strongly correlated electrons, this volume brings together a variety of approaches to models of the Hubbard type - i.e., problems where both localized and delocalized elements are present in low dimensions. The chapters are arranged in three parts. The first part deals with two of the most widely used numerical methods in strongly correlated electrons, the density matrix renormalization group and the quantum Monte Carlo method. The second part covers Lagrangian, Functional Integral, Renormalization Group, Conformal, and Bosonization methods that can be applied to one-dimensional or weakly coupled chains. The third part considers functional derivatives, mean-field, self-consistent methods, slave-bosons, and extensions.

Book Lectures on the Physics of Highly Correlated Electron Systems VIII

Download or read book Lectures on the Physics of Highly Correlated Electron Systems VIII written by Adolfo Avella and published by American Inst. of Physics. This book was released on 2004-08-27 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers were peer reviewed by a local panel. The objective of the meeting was to promote the progress of young scientists by means of training through research. The lectures are up-to-date monographs of relevant subjects in the field of condensed matter physics. Contributions include the following lectures: Electron-Phonon Interaction and Strong Correlations in High-Temperature Superconductors: One cannot avoid the unavoidable (The properties of the normal state and pairing mechanism in high-Tc superconductors, Forward scattering peak in the EPI, The FSP theory, The ARPES non-shift puzzle, Interesting predictions of the FSP theory); Strongly Correlated Electron Materials: Dynamical Mean-Field Theory and Electronic Structure (The basic principles of dynamical mean-field theory (DMFT), application of DMFT to the Mott transition, compare to recent spectroscopy, transport experiments; the key role of the quasiparticle coherence scale, transfers of spectral weight between low- and intermediate or high energies is emphasized); Monte Carlo Simulations of Quantum Systems with Global Updates (a model for doped antiferromagnets, first application of the hybrid loop algorithm, namely the t-Jmodel with 1/r2 interaction).

Book Strongly Correlated Systems

    Book Details:
  • Author : Adolfo Avella
  • Publisher : Springer Science & Business Media
  • Release : 2013-04-05
  • ISBN : 3642351069
  • Pages : 350 pages

Download or read book Strongly Correlated Systems written by Adolfo Avella and published by Springer Science & Business Media. This book was released on 2013-04-05 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possible way, with the working details of a specific technique.

Book Electronic Structure Study of Strongly Correlated Mott insulators

Download or read book Electronic Structure Study of Strongly Correlated Mott insulators written by Quan Yin and published by . This book was released on 2008 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Novel Electronic Structure Theory  General Innovations and Strongly Correlated Systems

Download or read book Novel Electronic Structure Theory General Innovations and Strongly Correlated Systems written by and published by Academic Press. This book was released on 2018-01-03 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Novel Electronic Structure Theory: General Innovations and Strongly Correlated Systems, Volume 76, the latest release in the Advances in Quantum Chemistry series presents work and reviews of current work in quantum chemistry (molecules), but also includes scattering from atoms and solid state work of interest in physics. Topics covered in this release include the Present Status of Selected Configuration Interaction with Truncation Energy Error, Recent Developments in Asymptotic Expansions from Numerical Analysis and Approximation Theory, The kinetic energy Pauli enhancement factor and its role in determining the shell structure of atoms and molecules, Numerical Hartree-Fock and Many-Body Calculations for Diatomic Molecules, and more. Provides reports on current work in molecular and atomic quantum mechanics Contains work reported by many of the best scientists in the field Presents the latest release in the Advances in Quantum Chemistry series

Book Electronic Structure and Phase Stability of Strongly Correlated Electron Materials

Download or read book Electronic Structure and Phase Stability of Strongly Correlated Electron Materials written by Eric Brice Isaacs and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Using the known charge density wave of this octahedral phase, we assess the validity of DFT and DFT+U in this class of materials. If realized, trigonal prismatic VS2 could be experimentally probed in an unprecedented fashion due to its monolayer nature.

Book Lectures on the Physics of Highly Correlated Electron Systems VIII

Download or read book Lectures on the Physics of Highly Correlated Electron Systems VIII written by Adolfo Avella and published by American Institute of Physics. This book was released on 2004-08-27 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers were peer reviewed by a local panel. The objective of the meeting was to promote the progress of young scientists by means of training through research. The lectures are up-to-date monographs of relevant subjects in the field of condensed matter physics. Contributions include the following lectures: Electron-Phonon Interaction and Strong Correlations in High-Temperature Superconductors: One cannot avoid the unavoidable (The properties of the normal state and pairing mechanism in high-Tc superconductors, Forward scattering peak in the EPI, The FSP theory, The ARPES non-shift puzzle, Interesting predictions of the FSP theory); Strongly Correlated Electron Materials: Dynamical Mean-Field Theory and Electronic Structure (The basic principles of dynamical mean-field theory (DMFT), application of DMFT to the Mott transition, compare to recent spectroscopy, transport experiments; the key role of the quasiparticle coherence scale, transfers of spectral weight between low- and intermediate or high energies is emphasized); Monte Carlo Simulations of Quantum Systems with Global Updates (a model for doped antiferromagnets, first application of the hybrid loop algorithm, namely the t-Jmodel with 1/r2 interaction).

Book Studying Bonding and Electronic Structures of Materials Under Extreme Conditions

Download or read book Studying Bonding and Electronic Structures of Materials Under Extreme Conditions written by Shibing Wang and published by Stanford University. This book was released on 2011 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advances in high pressure diamond anvil cell techniques and synchrotron radiation characterization methods have enabled investigation of a wide range of materials properties in-situ under extreme conditions. High pressure studies have made significant contribution to our understanding in a number of scientific fields, e.g. condensed matter physics, chemistry, Earth and planetary sciences, and material sciences. Pressure, as a fundamental thermodynamic variable, can induce changes in the electronic and structural configuration of a material, which in turn can dramatically alter its properties. The novel phases and new compounds existing at high pressure have improved our basic understanding of bonding and interactions in condensed matter. This dissertation focuses on how pressure affects materials' bonding and electronic structures in two types of systems: hydrogen rich molecular compounds and strongly correlated transition metal oxides. The interaction of boranes and hydrogen was studied using optical microscopy and Raman spectroscopy and their hydrogen storage potential is discussed in the context of practical applications. The pressure-induced behavior of the SiH4 + H2 binary system and the formation of a newly formed compound SiH4(H2)2 were investigated using a combination of optical microscopy, Raman spectroscopy and x-ray diffraction. The experimental work along with DFT calculations on the electronic properties of the compound up to the possible metallization pressure, indicated that there are strong intermolecular interactions between SiH4 and H2 in the condensed phase. By using a newly developed synchrotron x-ray spectroscopy technique, we were able to follow the evolution of the 3d band of a 3d transition metal oxide, Fe2O3 under pressure, which experiences a series of structural, electronic and spin transitions at approximately 50 GPa. Together with theoretical calculations we revisited its electronic phase transition mechanism, and found that the electronic transitions are reflected in the pre-edge region.

Book Optimised Projections for the Ab Initio Simulation of Large and Strongly Correlated Systems

Download or read book Optimised Projections for the Ab Initio Simulation of Large and Strongly Correlated Systems written by David D. O'Regan and published by Springer Science & Business Media. This book was released on 2011-09-24 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Density functional theory (DFT) has become the standard workhorse for quantum mechanical simulations as it offers a good compromise between accuracy and computational cost. However, there are many important systems for which DFT performs very poorly, most notably strongly-correlated materials, resulting in a significant recent growth in interest in 'beyond DFT' methods. The widely used DFT+U technique, in particular, involves the addition of explicit Coulomb repulsion terms to reproduce the physics of spatially-localised electronic subspaces. The magnitude of these corrective terms, measured by the famous Hubbard U parameter, has received much attention but less so for the projections used to delineate these subspaces. The dependence on the choice of these projections is studied in detail here and a method to overcome this ambiguity in DFT+U, by self-consistently determining the projections, is introduced. The author shows how nonorthogonal representations for electronic states may be used to construct these projections and, furthermore, how DFT+U may be implemented with a linearly increasing cost with respect to system size. The use of nonorthogonal functions in the context of electronic structure calculations is extensively discussed and clarified, with new interpretations and results, and, on this topic, this work may serve as a reference for future workers in the field.