EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Electronic Structure Methods for Complex Materials

Download or read book Electronic Structure Methods for Complex Materials written by Wai-Yim Ching and published by OUP Oxford. This book was released on 2012-05-17 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Density functional theory (DFT) has blossomed in the past few decades into a powerful tool that is used by experimentalists and theoreticians alike. This book highlights the extensive contributions that the DFT-based OLCAO method has made to progress in this field, and it demonstrates its competitiveness for performing ab initio calculations on large and complex models of practical systems. A brief historical account and introduction to the elements of the theory set the stage for discussions on semiconductors, insulators, crystalline metals and alloys, complex crystals, non-crystalline solids and liquids, microstructure containing systems and those containing impurities, defects, and surfaces, biomolecular systems, and the technique of ab initio core level spectroscopy calculation.

Book Electronic Structure of Materials

Download or read book Electronic Structure of Materials written by Rajendra Prasad and published by Taylor & Francis. This book was released on 2013-07-23 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most textbooks in the field are either too advanced for students or don't adequately cover current research topics. Bridging this gap, Electronic Structure of Materials helps advanced undergraduate and graduate students understand electronic structure methods and enables them to use these techniques in their work.Developed from the author's lecture

Book Computational Methods for Large Systems

Download or read book Computational Methods for Large Systems written by Jeffrey R. Reimers and published by John Wiley & Sons. This book was released on 2011-08-24 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: While its results normally complement the information obtained by chemical experiments, computer computations can in some cases predict unobserved chemical phenomena Electronic-Structure Computational Methods for Large Systems gives readers a simple description of modern electronic-structure techniques. It shows what techniques are pertinent for particular problems in biotechnology and nanotechnology and provides a balanced treatment of topics that teach strengths and weaknesses, appropriate and inappropriate methods. It’s a book that will enhance the your calculating confidence and improve your ability to predict new effects and solve new problems.

Book The Electronic Structure of Complex Systems

Download or read book The Electronic Structure of Complex Systems written by P. Phariseau and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 807 pages. Available in PDF, EPUB and Kindle. Book excerpt: We present here the transcripts of lectures and talks which were delivered at the NATO ADVANCED STUDY INSTITUTE "Electronic Structure of Complex Systems" held at the State University of Ghent, Belgium during the period July 12-23, 1982. The aim of these lectures was to highlight some of the current progress in our understanding of the electronic structure of com plex systems. A massive leap forward is obtained in bandstructure calculations with the advent of linear methods. The bandtheory also profitted tremendously from the recent developments in the density functional theories for the properties of the interacting electron gas in the presence of an external field of ions. The means of per forming fast bandstructure calculations and the confidence in the underlying potential functions have led in the past five years or so to a wealth of investigations into the electronic properties of elemental solids and compounds. The study of the trends of the electronic structure through families of materials provided invalu able insights for the prediction of new materials. The detailed study of the electronic structure of specific solids was not neglected and our present knowledge of d- and f-metals and metal hydrides was reviewed. For those systems we also investi gated the accuracy of the one electron potentials in fine detail and we complemented this with the study of small clusters of atoms where our calculations are amenable to comparison with the frontiers of quantum chemistry calculations.

Book Electronic Structure

    Book Details:
  • Author : Richard M. Martin
  • Publisher : Cambridge University Press
  • Release : 2004-04-08
  • ISBN : 9780521782852
  • Pages : 658 pages

Download or read book Electronic Structure written by Richard M. Martin and published by Cambridge University Press. This book was released on 2004-04-08 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: An important graduate textbook in condensed matter physics by highly regarded physicist.

Book First Principles Approaches to Spectroscopic Properties of Complex Materials

Download or read book First Principles Approaches to Spectroscopic Properties of Complex Materials written by Cristiana Di Valentin and published by Springer. This book was released on 2014-09-26 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.

Book Electronic Structure of Materials

Download or read book Electronic Structure of Materials written by Adrian P. Sutton and published by Clarendon Press. This book was released on 1993-09-30 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the modern real-space approach to electronic structures and properties of crystalline and non-crystalline materials in a form readily accessible to undergraduates in materials science, physics, and chemistry. - ;This book describes the modern real-space approach to electronic structures and properties of crystalline and non-crystalline materials in a form readily accessible to undergraduates in materials science, physics, and chemistry. -

Book Electronic Structure of Materials

Download or read book Electronic Structure of Materials written by Natalia Chezhina and published by CRC Press. This book was released on 2019-04-01 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a short survey of magnetochemistry as a promising method for revealing the electronic structure of inorganic substances, particularly solid oxide materials. It is supported by five chapters that describe materials with various structures and applications, showing how the method of magnetic dilution with the aid of other physical methods (electron spin resonance, magnetization, Raman and Mössbauer spectroscopy, and electrical conductivity), accompanied by thorough structural and quantum mechanical studies, may be used for describing the states of atoms and interatomic interactions in multicomponent oxide systems. The book will serve as a guide for researchers in the field of various oxide materials, since it shows the roots for selecting the best structures and qualitative and quantitative compositions of oxide materials on the basis of the knowledge about their electronic structure. It is devoted to some of the most popular structures of multicomponent oxides among modern materials—perovskites and pyrochlores—giving a unified approach to their chemical structure.

Book Electronic Structure of Disordered Alloys  Surfaces and Interfaces

Download or read book Electronic Structure of Disordered Alloys Surfaces and Interfaces written by Ilja Turek and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: At present, there is an increasing interest in the prediction of properties of classical and new materials such as substitutional alloys, their surfaces, and metallic or semiconductor multilayers. A detailed understanding based on a thus of the utmost importance for fu microscopic, parameter-free approach is ture developments in solid state physics and materials science. The interrela tion between electronic and structural properties at surfaces plays a key role for a microscopic understanding of phenomena as diverse as catalysis, corrosion, chemisorption and crystal growth. Remarkable progress has been made in the past 10-15 years in the understand ing of behavior of ideal crystals and their surfaces by relating their properties to the underlying electronic structure as determined from the first principles. Similar studies of complex systems like imperfect surfaces, interfaces, and mul tilayered structures seem to be accessible by now. Conventional band-structure methods, however, are of limited use because they require an excessive number of atoms per elementary cell, and are not able to account fully for e.g. substitu tional disorder and the true semiinfinite geometry of surfaces. Such problems can be solved more appropriately by Green function techniques and multiple scattering formalism.

Book Electronic Structure of Materials

Download or read book Electronic Structure of Materials written by Rajendra Prasad and published by CRC Press. This book was released on 2013-07-23 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most textbooks in the field are either too advanced for students or don’t adequately cover current research topics. Bridging this gap, Electronic Structure of Materials helps advanced undergraduate and graduate students understand electronic structure methods and enables them to use these techniques in their work. Developed from the author’s lecture notes, this classroom-tested book takes a microscopic view of materials as composed of interacting electrons and nuclei. It explains all the properties of materials in terms of basic quantities of electrons and nuclei, such as electronic charge, mass, and atomic number. Based on quantum mechanics, this first-principles approach does not have any adjustable parameters. The first half of the text presents the fundamentals and methods of electronic structure. Using numerous examples, the second half illustrates applications of the methods to various materials, including crystalline solids, disordered substitutional alloys, amorphous solids, nanoclusters, nanowires, graphene, topological insulators, battery materials, spintronic materials, and materials under extreme conditions. Every chapter starts at a basic level and gradually moves to more complex topics, preparing students for more advanced work in the field. End-of-chapter exercises also help students get a sense of numbers and visualize the physical picture associated with the problem. Students are encouraged to practice with the electronic structure calculations via user-friendly software packages.

Book Electronic transitions and correlation effects

Download or read book Electronic transitions and correlation effects written by Johan Jönsson and published by Linköping University Electronic Press. This book was released on 2020-03-17 with total page 85 pages. Available in PDF, EPUB and Kindle. Book excerpt: Macroscopic properties of real materials, such as conductivity, magneticproperties, crystal structure parameters, etc. are closely related or evendetermined by the configuration of their electrons, characterized by electronicstructure. By changing the conditions, e.g, pressure, temperature, magnetic/electric field, chemical doping, etc. one can modify the electronic structure ofsolids and therefore induce a phase transition(s) between different electronic andmagnetic states. One famous example is a Mott metal-to-insulator phase transition,at which a material undergoes a significant, often many orders of magnitude, changeof conductivity caused by the interplay between itineracy and localization of thecarriers. Electronic topological transitions (ETT) involvechanges in the topology of a metal's Fermi surface. This thesis investigates theeffect of such electronic transitions in various materials, ranging from pureelements to complex compounds. To describe the interplay between electronic transitionsand properties of real materials,different state-of-the-art computational methods are used. The densityfunctional theory(DFT), as well as the DFT + U method, is used to calculatestructural properties. The validity of recently introduced exchange-correlationfunctionals, such as the strongly constrained and appropriately normed (SCAN)functional, is also assessed for magnetic elements. In order toinclude dynamical effects of electron interactions we use the DFT + dynamical meanfield theory (DFT + DMFT) method. Experiments in hcp-Os have reported peculiarities in the ratio betweenlattice parameters at high pressure. Previous calculations have suggested these transitions maybe related to ETTs and even crossings of core levels at ultra high pressure. Inthis thesis it is shownthat the crossing of core levels is a general feature of heavy transitionmetals. Experiments have therefore been performed to look for indications ofthis transition in Ir using X-ray absorption spectroscopy. In NiO, strongrepulsion between electrons leads to a Mott insulating state at ambientconditions. It has long been predicted that high pressure will lead to aninsulator-to-metal transition. This has been suggested to be accompanied by aloss of magnetic order, and a structural phase transition. In collaboration withexperimentalists we look for thistransition by investigating the X-ray absorption spectra as well as themagnetic hyperfine field. We find no evidence of a Mott transition up to 280GPa. In the Mott insulator TiPO4, application of external pressure has beensuggested to lead to a spin-Peierls transition at room temperature. Weinvestigate the dimerisation and the magnetic structure of TiPO4 at high pressure.As pressure is increased further, TiPO4 goes through a metal to insulatortransition before an eventual crystallographic phase transition. Remarkably, thenew high pressure phases are found to be insulators; the Mott insulating stateis restored. MAX phases are layered materials that combinemetallic and ceramic properties and feature layers of M-metal and X-C or N atomsinterconnected by A-group atoms. Magnetic MAX-phases with their low dimensionalmagnetism are promising candidates for applications in e.g., spintronics.The validity of various theoretical approaches are discussed in connection tothe magnetic MAX-phase Mn2GaC. Using DFT and DFT + DMFT we consider the hightemperature paramagnetic state, and whether the magnetic moments are formed bylocalized or itinerant electrons. Ett materials makroskopiska egenskaper, såsom ledningsförmåga, magnetiska egenskaper, kristallstrukturparametrar, etc. är relaterade till, eller till och med bestämda av elektronernas konfiguration, vilken karakteriseras av elektronstrukturen. Genom att ändra förhållandena, till exempel via tryck, temperatur, magnetiska och/eller elektriska fält, dopning, etc. är det möjligt att modifiera elektronstrukturen hos ett material, och därigenom inducera fasövergångar mellan olika magnetiska och elektron-tillstånd. Mott metall-till-isolator övergången är ett berömt exempel på en fasövergång, då ett material genomgår en omfattande, ofta flera tiopotenser, förändring i ledningsförmåga, orsakad av samspelet mellan ambulerande och lokaliserade laddningsbärare. Vid en elektronisk-topologisk övergång (eng. electronic topological transition, ETT) sker förändringar i elektronernas energifördelning vilket modifierar materialets Fermi-yta. I den här avhandlingen undersöks dylika övergångar i olika material, från rena grundämnen till komplicerade föreningar. Flera olika toppmoderna beräkningsmetoder används för att redogöra för samspelet mellan elektroniska fasövergångar och egenskaper hos riktiga material. Täthetsfunktionalterori (eng. density functional theory, DFT), samt DFT + U, har används för att beräkna strukturella egenskaper. Lämplighetsgraden i att använda nyligen publicerade exchangecorrelation- funktionaler, såsom SCAN (eng. strongly constrained and appropriately normed), för att beskriva magnetiska grundämnen undersöks även. För att inkludera dynamiska elektronkorrelationer använder vi metoden DFT + dynamisk medelfältteori (eng. dynamical mean field theory, DMFT). Experiment utförda på hcp-Os vid högt tryck visar underliga hopp i kvoten mellan gitterparametrar. Tidigare beräkningar har indikerat att dessa övergångar kan vara relaterade till elektronisk-topologiska övergångar och korsande av kärntillstånd. I den här avhandlingen visas också att korsning av kärntillstånden är en generell egenskap hos tunga övergångsmetaller. Därför utförs röntgenabsorptionsexperiment på Ir för att leta efter tecken på denna typ av övergång. Övergångsmetalloxiden NiO har sedan länge förutspåtts genomgå en isolator till metall Mott-övergång. Det har föreslagits att denna övergång sker vid höga tryck i samband med att materialets magnetiska ordning försvinner och en strukturell övergång sker. I samarbete med experimentalister letar vi efter denna övergång genom att studera röntgenabsorptionsspektra och det magnetiska hyperfina fältet. Vi ser inga indikationer på en Mott-övegång, upp till ett tryck på 280 GPa. Det har föreslagits att Mott-isolatorn TiPO4 genomgår en så kallad spin-Peierls-övergång, vid rumstemperatur, när tryck appliceras. Vi undersöker dimeriseringen och den magnetiska strukturen i TiPO4 som funktion av tryck. Vid höga tryck genomgår TiPO4 ytterligare övergångar, från en isolerande till en metallisk fas för att slutligen genomgå en strukturell övergång. De nya högtrycksfaserna visar sig anmärkningsvärt vara Mott-isolatorer. MAX-faser är en grupp material med specifik kristallstruktur, som kombinerar egenskaper från keramiska material och metaller. En MAX-fas består av lager av M –metall-atomer – och X – kol- eller kväveatomer – vilka sammanbinds av atomer från grupp A. Magnetiska MAX-faser som visar magnetiska egenskaper, liknande de för lågdimensionella material, är lovande kandidater för applikation inom exempelvis spinntronik. Den här avhandlingen undersöker lämplighetsgraden i att använda diverse teoretiska metoder för att beskriva magnetiska MAX-faser. Med hjälp av DFT och DFT + DMFT undersöker vi den paramagnetiska högtemperaturfasen och huruvida de magnetiska momenten bildas av lokaliserade eller ambulerande elektroner.

Book Berry Phases in Electronic Structure Theory

Download or read book Berry Phases in Electronic Structure Theory written by David Vanderbilt and published by Cambridge University Press. This book was released on 2018-11 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the role of Berry phases in our modern understanding of the physics of electrons in solids.

Book Computational Quantum Mechanics for Materials Engineers

Download or read book Computational Quantum Mechanics for Materials Engineers written by Levente Vitos and published by Springer Science & Business Media. This book was released on 2007-08-10 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the only book to cover the most recent developments in applied quantum theory and their use in modeling materials properties. It describes new approaches to modeling disordered alloys and focuses on those approaches that combine the most efficient quantum-level theories of random alloys with the most sophisticated numerical techniques. In doing so, it establishes a theoretical insight into the electronic structure of complex materials such as stainless steels, Hume-Rothery alloys and silicates.

Book Topics in Computational Materials Science

Download or read book Topics in Computational Materials Science written by C Y Fong and published by World Scientific. This book was released on 1998-02-28 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the state-of-the-art research topics in theoretical materials science. It encompasses the computational methods and techniques which can advance more realistic calculations for understanding the physical principles in new growth methods of optoelectronic materials and related surface problems. These principles also govern the photonic, electronic, and structural properties of materials which are essential for device applications. They will also provide the crucial ingredients for the growth of future novel materials. Contents:Advances in Algorithmic Development in the Electronic Structure of Large Systems (E B Stechel)Plane Wave Pseudopotential Electronic Structure Calculations on Parallel Supercomputers (J S Nelson & S J Plimpton)First-Principles Theory of Electron Excitation Energies in Solids, Surfaces, and Defects (S G Louie)Photonic Band Structure (R Biswas et al.)Tight-Binding Parametrization of First-Principles Results (M J Mehl & D A Papaconstantopoulos)First Principles Studies of Stability of Intermetallic Binary Alloys (Z W Lu & B M Klein)Simulation of Semiconductor Growth Mechanisms in the Presence of Adsorbate Layers (E Kaxiras)Bond Saturation Model: A Lattice Gas Approach for Studying Close Packed Metallic Surfaces (M C Fallis & C Y Fong) Readership: Materials scientists. keywords:Linear Scaling;Density Matrix Algorithm;Quasi-Particle Excitations;Self-Energy;GW Approximation;Density Functional Theory – Based Slater Koster Tight-Binding Parametrization;Intermetallic Binary Alloys;Short-Range Order;Alloy Stability;Semiconductor Growth;Activation Energy;Kinetic Monte Carlo Simulations;Lattice Gas Approach;Metallic Surfaces;Bond Saturation Model;Cluster Energetics;Embedded Atom Method

Book Lectures On Methods Of Electronic Structure Calculations   Proceedings Of The Miniworkshop On  Methods Of Electronic Structure Calculations  And Working Group On  Disordered Alloys

Download or read book Lectures On Methods Of Electronic Structure Calculations Proceedings Of The Miniworkshop On Methods Of Electronic Structure Calculations And Working Group On Disordered Alloys written by Ole Krogh Andersen and published by World Scientific. This book was released on 1995-02-23 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developments in the density functional theory and the methods of electronic structure calculations have made it possible to carry out ab-initio studies of a variety of materials efficiently and at a predictable level. This book covers many of those state-of-the-art developments and their applications to ordered and disordered materials, surfaces and interfaces and clusters, etc.

Book Electronic Structure and the Properties of Solids

Download or read book Electronic Structure and the Properties of Solids written by Walter A. Harrison and published by Courier Corporation. This book was released on 1989-07-01 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Should be widely read by practicing physicists, chemists and materials scientists." — Philosophical Magazine In this comprehensive and innovative text, Professor Harrison (Stanford University) offers a basic understanding of the electronic structure of covalent and ionic solids, simple metals, transition metals, and their compounds. The book illuminates the relationships of the electronic structures of these materials and shows how to calculate dielectric, conducting, and bonding properties for each. Also described are various methods of approximating electronic structure, providing insight and even quantitative results from the comparisons. Dr. Harrison has also included an especially helpful "Solid State Table of the Elements" that provides all the parameters needed to estimate almost any property of any solid, with a hand-held calculator, using the techniques developed in the book. Designed for graduate or advanced undergraduate students who have completed an undergraduate course in quantum mechanics or atomic and modern physics, the text treats the relation between structure and properties comprehensively for all solids rather than for small classes of solids. This makes it an indispensable reference for all who make use of approximative methods for electronic-structure engineering, semiconductor development and materials science. The problems at the ends of the chapters are an important aspect of the book. They clearly show that the calculations for systems and properties of genuine and current interest are actually quite elementary. Prefaces. Problems. Tables. Appendixes. Solid State Table of the Elements. Bibliography. Author and Subject Indexes. "Will doubtless exert a lasting influence on the solid-state physics literature." — Physics Today

Book Electronic Structure of Materials

Download or read book Electronic Structure of Materials written by Mireille Defranceschi and published by . This book was released on 2000 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: