Download or read book Electronic Characterisation of Earth Abundant Sulphides for Solar Photovoltaics written by Thomas James Whittles and published by Springer. This book was released on 2018-07-31 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the electronic structure of earth-abundant and environmentally friendly materials for use as absorber layers within photovoltaic cells. The corroboration between high-quality photoemission measurements and density of states calculations yields valuable insights into why these materials have demonstrated poor device efficiencies in the vast literature cited. The book shows how the materials’ underlying electronic structures affect their properties, and how the band positions make them unsuitable for use with established solar cell technologies. After explaining these poor efficiencies, the book offers alternative window layer materials to improve the use of these absorbers. The power of photoemission and interpretation of the data in terms of factors generally overlooked in the literature, such as the materials’ oxidation and phase impurity, is demonstrated. Representing a unique reference guide, the book will be of considerable interest and value to members of the photoemission community engaged in solar cell research, and to a wider materials science audience as well.
Download or read book Sulfide and Selenide Based Materials for Emerging Applications written by Goutam Kumar Dalapati and published by Elsevier. This book was released on 2022-06-17 with total page 804 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sulfide and Selenide-Based Materials for Emerging Applications explores a materials and device-based approach to the transition to low-cost sustainable thin film photovoltaic devices and energy storage systems. Part 1 examines recent advances in renewable technologies and materials for sustainable development, as well as photovoltaic energy storage devices. Part 2 discusses thin film solar cells with earth abundant materials, highlighting the power conversion efficiency of the kesterite-based solar cells. Kesterite film technology including different synthesis and doping method designs are also discussed, along with emerging sulfide semiconductors with potential in thin film photovoltaics/flexible devices. In Part 3 sulfur- and selenides-based materials for thermoelectric applications are explored. Part 4 covers chalcogenide semiconductors with applications in electrochemical water splitting for green hydrogen generation and oxygen generation, as well as the latest research on layered 2D transition metal chalcogenides for electrochemical water splitting. To conclude, part 5 discusses recent developments of storage technologies such as Li-S batteries, sulfide-based supercapacitors and metal-ion batteries, and the development of 3D printing sulfides/selenides for energy conversion and storage. This book is a useful resource for those involved in green energy technology and decarbonization and is designed for a broad audience, from students to experienced scientists. - Discusses the emerging sulfide/selenide based thin film absorber materials and their deposition methods - Previews device engineering techniques that have been developed to enhance the power conversion efficiency and lifetime of sulfide/selenide based thin film solar cells - Provides an update on what low cost sulfide/selenide based electro-catalysts have become available and the comparison of their performance vs. noble metal catalysts
Download or read book Chemical Solution Deposition Of Semiconductor Films written by Gary Hodes and published by CRC Press. This book was released on 2002-10-08 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discussing specific depositions of a wide range of semiconductors and properties of the resulting films, Chemical Solution Deposition of Semiconductor Films examines the processes involved and explains the effect of various process parameters on final film and film deposition outcomes through the use of detailed examples. Supplying experimental res
Download or read book Advanced Characterization Techniques for Thin Film Solar Cells written by Daniel Abou-Ras and published by John Wiley & Sons. This book was released on 2016-07-13 with total page 760 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book focuses on advanced characterization methods for thin-film solar cells that have proven their relevance both for academic and corporate photovoltaic research and development. After an introduction to thin-film photovoltaics, highly experienced experts report on device and materials characterization methods such as electroluminescence analysis, capacitance spectroscopy, and various microscopy methods. In the final part of the book simulation techniques are presented which are used for ab-initio calculations of relevant semiconductors and for device simulations in 1D, 2D and 3D. Building on a proven concept, this new edition also covers thermography, transient optoelectronic methods, and absorption and photocurrent spectroscopy.
Download or read book Nanostructured Energy Devices written by Juan Bisquert and published by CRC Press. This book was released on 2014-11-11 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the pressing needs of society, low cost materials for energy devices have experienced an outstanding development in recent times. In this highly multidisciplinary area, chemistry, material science, physics, and electrochemistry meet to develop new materials and devices that perform required energy conversion and storage processes with high efficiency, adequate capabilities for required applications, and low production cost. Nanostructured Energy Devices: Equilibrium Concepts and Kinetics introduces the main physicochemical principles that govern the operation of energy devices. It includes coverage of the physical principles that control energy devices made of nanostructured and bulk materials, with the main attention focused on solution processed thin film technologies. The book analyzes the fundamental concepts, main properties, and key applications of energy devices that are made using nanostructured materials and innovative thin film low cost technologies. This includes hybrid and organic solar cells, electrochemical batteries, diodes, LEDs and OLEDs, transistors, and the direct conversion of solar radiation to chemical fuels. It decodes rigorous formulation of thermodynamic concepts to establish energy diagrams, and explains also the fundamental kinetic models that determine the flow of electrons and ions in the device. The author lays out the main properties of semiconductors and their junctions for applications in solar cell and solar fuel devices. He emphasizes a unified view of the device operation principles that covers well-known examples but also enables you to discuss original research topics on a solid ground. Although a challenging field of science and technology, energy devices such as solar cells and batteries have the potential to impact the creation of a carbon-free energy economy. However, the field draws scientists from a broad set of backgrounds, united towards common goals. This text presents the main concepts that apply to several types of devices, from a very basic level so that you can gain insight into the general view of principles of operation of the energy devices. It pulls together the views and terminologies used by several communities to create better communication and increased collaboration among them.
Download or read book The Self Potential Method written by André Revil and published by Cambridge University Press. This book was released on 2013-07-11 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: The self-potential method enables non-intrusive assessment and imaging of disturbances in electrical currents of conductive subsurface materials. It has an increasing number of applications, from mapping fluid flow in the subsurface of the Earth to detecting preferential flow paths in earth dams and embankments. This book provides the first full overview of the fundamental concepts of this method and its applications in the field. It discusses the historical perspective, laboratory investigations undertaken, the inverse problem and seismoelectric coupling, and concludes with the application of the self-potential method to geohazards, water resources and hydrothermal systems. Chapter exercises, online datasets and analytical software enable the reader to put the theory into practice. This book is a key reference for academic researchers and professionals working in the areas of geophysics, environmental science, hydrology and geotechnical engineering. It will also be valuable reading for related graduate courses.
Download or read book Functional Materials for Sustainable Energy Applications written by J A Kilner and published by Elsevier. This book was released on 2012-09-28 with total page 715 pages. Available in PDF, EPUB and Kindle. Book excerpt: Global demand for low cost, efficient and sustainable energy production is ever increasing. Driven by recent discoveries and innovation in the science and technology of materials, applications based on functional materials are becoming increasingly important. Functional materials for sustainable energy applications provides an essential guide to the development and application of these materials in sustainable energy production.Part one reviews functional materials for solar power, including silicon-based, thin-film, and dye sensitized photovoltaic solar cells, thermophotovoltaic device modelling and photoelectrochemical cells. Part two focuses on functional materials for hydrogen production and storage. Functional materials for fuel cells are then explored in part three where developments in membranes, catalysts and membrane electrode assemblies for polymer electrolyte and direct methanol fuel cells are discussed, alongside electrolytes and ion conductors, novel cathodes, anodes, thin films and proton conductors for solid oxide fuel cells. Part four considers functional materials for demand reduction and energy storage, before the book concludes in part five with an investigation into computer simulation studies of functional materials.With its distinguished editors and international team of expert contributors, Functional materials for sustainable energy applications is an indispensable tool for anyone involved in the research, development, manufacture and application of materials for sustainable energy production, including materials engineers, scientists and academics in the rapidly developing, interdisciplinary field of sustainable energy. - An essential guide to the development and application of functional materials in sustainable energy production - Reviews functional materials for solar power - Focuses on functional materials for hydrogen production and storage, fuel cells, demand reduction and energy storage
Download or read book Nanocasting written by An-Hui Lu and published by Royal Society of Chemistry. This book was released on 2010 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured materials with tailored properties are regarded as a fundamental element in the development of future science and technology. Research is still ongoing into the nanosized construction elements required to create functional solids. The recently developed technique, nanocasting, has great advantage over others in terms of the synthesis of special nanostructured materials by the careful choice of suitable elements and nanoengineering steps. This new book summarizes the recent developments in nanocasting, including the principles of nanocasting, syntheses of novel nanostructured materials, characterization methods, detailed synthetic recipes and further possible development in this area. The book focuses on the synthesis of porous solids from the viewpoint of methodology and introduces the science of nanocasting from fundamental principles to their use in synthesis of various materials. It starts by outlining the principles of nanocasting, requirements to the templates and precursors and the tools needed to probe matter at the nanoscale level. It describes how to synthesize nano structured porous solids with defined characteristics and finally discusses the functionalization and application of porous solids. Special attention is given to new developments in this field and future perspectives. A useful appendix covering the detailed synthetic recipes of various templates including porous silica, porous carbon and colloidal spheres is included which will be invaluable to researchers wanting to follow and reproduce nanocast materials. Topics covered in the book include: * inorganic chemistry * organic chemistry * solution chemistry * sol-gel and interface science * acid-base equilibria * electrochemistry * biochemistry * confined synthesis The book gives readers not only an overview of nanocasting technology, but also sufficient information and knowledge for those wanting to prepare various nanostructured materials without needing to search the available literature.
Download or read book Characterization of Minerals Metals and Materials 2020 written by Jian Li and published by Springer Nature. This book was released on 2020-01-23 with total page 723 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection gives broad and up-to-date results in the research and development of materials characterization and processing. Topics covered include advanced characterization methods, minerals, mechanical properties, coatings, polymers and composites, corrosion, welding, magnetic materials, and electronic materials. The book explores scientific processes to characterize materials using modern technologies, and focuses on the interrelationships and interdependence among processing, structure, properties, and performance of materials.
Download or read book Wearable Solar Cells written by Hao Sun and published by John Wiley & Sons. This book was released on 2023-12-11 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wearable Solar Cells Understand a groundbreaking new energy technology Solar energy is one of the most important paths to a sustainable future. In recent years, extensive research and development has begun to produce wearable solar cells, whose novel planar and fiber format gives them enormous flexibility and a wide range of potential uses. The possibility of a solar energy source that can be fitted to the human body promises to become an extraordinary tool for meeting various kinds of personal energy needs. Wearable Solar Cells: Mechanisms, Materials, and Devices serves as a comprehensive introduction to this cutting-edge technology and its applications. Recent research pointing towards fiber-format solar cells as a bold new frontier is summarized and explored. The result is an essential resource for both experienced researchers and newcomers to the field. Wearable Solar Cells readers will also find: Close coverage of integrated energy harvesting and storage devices Detailed discussion of dye-sensitized solar cells, polymer solar cells, perovskite solar cells, and more An authorial team with decades of combined research experience Wearable Solar Cells is ideal for materials scientists, polymer chemists, electrical engineers, solid-state physicists, and advanced students interested in these and related topics.
Download or read book Copper Zinc Tin Sulfide Based Thin Film Solar Cells written by Kentaro Ito and published by John Wiley & Sons. This book was released on 2014-12-11 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and toxicity issues. The device performance of CZTS-based thin film solar cells has been steadily improving over the past 20 years, and they have now reached near commercial efficiency levels (10%). These achievements prove that CZTS-based solar cells have the potential to be used for large-scale deployment of photovoltaics. With contributions from leading researchers from academia and industry, many of these authors have contributed to the improvement of its efficiency, and have rich experience in preparing a variety of semiconducting thin films for solar cells.
Download or read book Physics and Technology of Amorphous Crystalline Heterostructure Silicon Solar Cells written by Wilfried G. J. H. M. van Sark and published by Springer Science & Business Media. This book was released on 2011-11-16 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today’s solar cell multi-GW market is dominated by crystalline silicon (c-Si) wafer technology, however new cell concepts are entering the market. One very promising solar cell design to answer these needs is the silicon hetero-junction solar cell, of which the emitter and back surface field are basically produced by a low temperature growth of ultra-thin layers of amorphous silicon. In this design, amorphous silicon (a-Si:H) constitutes both „emitter“ and „base-contact/back surface field“ on both sides of a thin crystalline silicon wafer-base (c-Si) where the electrons and holes are photogenerated; at the same time, a-Si:H passivates the c-Si surface. Recently, cell efficiencies above 23% have been demonstrated for such solar cells. In this book, the editors present an overview of the state-of-the-art in physics and technology of amorphous-crystalline heterostructure silicon solar cells. The heterojunction concept is introduced, processes and resulting properties of the materials used in the cell and their heterointerfaces are discussed and characterization techniques and simulation tools are presented.
Download or read book Semiconductors written by Otfried Madelung and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Data Handbook is a updated and largely extended new edition of the book "Semiconductors: Basic Data". The data of the former edition have been updated and a complete representation of all relevant basic data is now given for all known groups of semiconducting materials.
Download or read book Handbook of Transparent Conductors written by David S. Ginley and published by Springer Science & Business Media. This book was released on 2010-09-11 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transparent conducting materials are key elements in a wide variety of current technologies including flat panel displays, photovoltaics, organic, low-e windows and electrochromics. The needs for new and improved materials is pressing, because the existing materials do not have the performance levels to meet the ever- increasing demand, and because some of the current materials used may not be viable in the future. In addition, the field of transparent conductors has gone through dramatic changes in the last 5-7 years with new materials being identified, new applications and new people in the field. “Handbook of Transparent Conductors” presents transparent conductors in a historical perspective, provides current applications as well as insights into the future of the devices. It is a comprehensive reference, and represents the most current resource on the subject.
Download or read book Quaternary Dating Methods written by Mike Walker and published by John Wiley & Sons. This book was released on 2013-04-30 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introductory textbook introduces the basics of dating, the range of techniques available and the strengths and limitations of each of the principal methods. Coverage includes: the concept of time in Quaternary Science and related fields the history of dating from lithostratigraphy and biostratigraphy the development and application of radiometric methods different methods in dating: radiometric dating, incremental dating, relative dating and age equivalence Presented in a clear and straightforward manner with the minimum of technical detail, this text is a great introduction for both students and practitioners in the Earth, Environmental and Archaeological Sciences. Praise from the reviews: "This book is a must for any Quaternary scientist." SOUTH AFRICAN GEOGRAPHICAL JOURNAL, September 2006 “...very well organized, clearly and straightforwardly written and provides a good overview on the wide field of Quaternary dating methods...” JOURNAL OF QUATERNARY SCIENCE, January 2007
Download or read book Electrochemistry of Metal Chalcogenides written by Mirtat Bouroushian and published by Springer Science & Business Media. This book was released on 2010-04-23 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author provides a unified account of the electrochemical material science of metal chalcogenide (MCh) compounds and alloys with regard to their synthesis, processing and applications. Starting with the chemical fundamentals of the chalcogens and their major compounds, the initial part of the book includes a systematic description of the MCh solids on the basis of the Periodic Table in terms of their structures and key properties. This is followed by a general discussion on the electrochemistry of chalcogen species, and the principles underlying the electrochemical formation of inorganic compounds/alloys. The core of the book offers an insight into available experimental results and inferences regarding the electrochemical preparation and microstructural control of conventional and novel MCh structures. It also aims to survey their photoelectrochemistry, both from a material-oriented point of view and as connected to specific processes such as photocatalysis and solar energy conversion. Finally, the book illustrates the relevance of MCh materials to various applications of electrochemical interest such as (electro)catalysis in fuel cells, energy storage with intercalation electrodes, and ion sensing.
Download or read book Ore Deposits in an Evolving Earth written by G.R.T. Jenkin and published by Geological Society of London. This book was released on 2015-01-02 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ore deposits form by a variety of natural processes that concentrate elements into a volume that can be economically mined. Their type, character and abundance reflect the environment in which they formed and thus they preserve key evidence for the evolution of magmatic and tectonic processes, the state of the atmosphere and hydrosphere, and the evolution of life over geological time. This volume presents 13 papers on topical subjects in ore deposit research viewed in the context of Earth evolution. These diverse, yet interlinked, papers cover topics including: controls on the temporal and spatial distribution of ore deposits; the sources of fluid, gold and other components of orogenic gold deposits; the degree of oxygenation in the Neoproterozoic ocean; bacterial immobilization of gold in the semi-arid near-surface environment; and mineral resources for the future, including issues of resource estimation, sustainability of supply and the criticality of certain elements to society.