EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Electromagnetics Explained

Download or read book Electromagnetics Explained written by Ron Schmitt and published by Newnes. This book was released on 2002-05-13 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction and Survey of the Electromagnetic Spectrum; Fundamentals of Electric Fields; Fundamentals of Magnetic Fields; Electrodynamics; Radiation; Relativity and Quantum Physics; The Hidden Schematic; Transmission Lines; Waveguides and Shields; Circuits as Guides for Waves and S-Parameters; Antennas: How to Make Circuits That Radiate; EMC (Part I: Basics, Part II: PCB Techniques, Part III: Cabling); Lenses, Dishes, and Antenna Arrays; Diffraction; Frequency Dependence of Materials, Thermal Radiation, and Noise; Electrical Engineering Book Recommendations; Index.

Book Electromagnetics Explained

Download or read book Electromagnetics Explained written by David McMahon and published by Wiley-Interscience. This book was released on 2015-01-20 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented in clear, concise, and easy-to-understand language, Electromagnetics Explained quickly introduces readers to concepts with an example-based approach that gets right to the calculations. The text's modular method allows readers to jump to a particular area of interest where they can learn how to do calculations in electrodynamics specific to their needs. Rich with solved examples throughout as well as over 200 figures that clarify the material covered, this is an essential guide for electrical engineers, computer scientists, physicists, mathematicians, and students looking for help in understanding electromagnetics.

Book Electromagnetics and Transmission Lines

Download or read book Electromagnetics and Transmission Lines written by Robert Alan Strangeway and published by John Wiley & Sons. This book was released on 2022-11-22 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electromagnetics and Transmission Lines Textbook resource covering static electric and magnetic fields, dynamic electromagnetic fields, transmission lines, antennas, and signal integrity within a single course Electromagnetics and Transmission Lines provides coverage of what every electrical engineer (not just the electromagnetic specialist) should know about electromagnetic fields and transmission lines. This work examines several fundamental electrical engineering concepts and components from an electromagnetic fields viewpoint, such as electric circuit laws, resistance, capacitance, and self and mutual inductances. The approach to transmission lines (T-lines), Smith charts, and scattering parameters establishes the underlying concepts of vector network analyzer (VNA) measurements. System-level antenna parameters, basic wireless links, and signal integrity are examined in the final chapters. As an efficient learning resource, electromagnetics and transmission lines content is strategically modulated in breadth and depth towards a single semester objective. Extraneous, distracting topics are excluded. The wording style is somewhat more conversational than most electromagnetics textbooks in order to enhance student engagement and inclusivity while conveying the rigor that is essential for engineering student development. To aid in information retention, the authors also provide supplementary material, including a homework solutions manual, lecture notes, and VNA experiments. Sample topics covered in Electromagnetics and Transmission Lines include: Vector algebra and coordinate systems, Coulomb’s law, Biot-Savart law, Gauss’s law, and solenoidal magnetic flux Electric potential, Ampere’s circuital law, Faraday’s law, displacement current, and the electromagnetic principles underlying resistance, capacitance, and self and mutual inductances The integral form of Maxwell’s equations from a conceptual viewpoint that relates the equations to physical understanding (the differential forms are also included in an appendix) DC transients and AC steady-state waves, reflections, and standing waves on T-lines Interrelationships of AC steady-state T-line theory, the Smith chart, and scattering parameters Antenna basics and line-of-sight link analysis using the Friis equation An introduction to signal integrity Electromagnetics and Transmission Lines is an authoritative textbook learning resource, suited perfectly for engineering programs at colleges and universities with a single required electromagnetic fields course. Student background assumptions are multivariable calculus, DC and AC electric circuits, physics of electromagnetics, and elementary differential equations.

Book Electromagnetic Fields  Theory and Problems

Download or read book Electromagnetic Fields Theory and Problems written by Murthy, T.V.S. Arun and published by S. Chand Publishing. This book was released on 2008 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electromagnetic Fields

Book Fundamentals of Electromagnetics with MATLAB

Download or read book Fundamentals of Electromagnetics with MATLAB written by Karl Erik Lonngren and published by SciTech Publishing. This book was released on 2007 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accompanying CD-ROM contains a MATLAB tutorial.

Book Mathematical Analysis of Deterministic and Stochastic Problems in Complex Media Electromagnetics

Download or read book Mathematical Analysis of Deterministic and Stochastic Problems in Complex Media Electromagnetics written by G. F. Roach and published by Princeton University Press. This book was released on 2012-03-04 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electromagnetic complex media are artificial materials that affect the propagation of electromagnetic waves in surprising ways not usually seen in nature. Because of their wide range of important applications, these materials have been intensely studied over the past twenty-five years, mainly from the perspectives of physics and engineering. But a body of rigorous mathematical theory has also gradually developed, and this is the first book to present that theory. Designed for researchers and advanced graduate students in applied mathematics, electrical engineering, and physics, this book introduces the electromagnetics of complex media through a systematic, state-of-the-art account of their mathematical theory. The book combines the study of well posedness, homogenization, and controllability of Maxwell equations complemented with constitutive relations describing complex media. The book treats deterministic and stochastic problems both in the frequency and time domains. It also covers computational aspects and scattering problems, among other important topics. Detailed appendices make the book self-contained in terms of mathematical prerequisites, and accessible to engineers and physicists as well as mathematicians.

Book Electromagnetics for High Speed Analog and Digital Communication Circuits

Download or read book Electromagnetics for High Speed Analog and Digital Communication Circuits written by Ali M. Niknejad and published by Cambridge University Press. This book was released on 2007-02-22 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern communications technology demands smaller, faster and more efficient circuits. This book reviews the fundamentals of electromagnetism in passive and active circuit elements, highlighting various effects and potential problems in designing a new circuit. The author begins with a review of the basics - the origin of resistance, capacitance, and inductance - then progresses to more advanced topics such as passive device design and layout, resonant circuits, impedance matching, high-speed switching circuits, and parasitic coupling and isolation techniques. Using examples and applications in RF and microwave systems, the author describes transmission lines, transformers, and distributed circuits. State-of-the-art developments in Si based broadband analog, RF, microwave, and mm-wave circuits are reviewed. With up-to-date results, techniques, practical examples, illustrations and worked examples, this book will be valuable to advanced undergraduate and graduate students of electrical engineering, and practitioners in the IC design industry. Further resources for this title are available at www.cambridge.org/9780521853507.

Book Electromagnetics Made Easy

Download or read book Electromagnetics Made Easy written by S. Balaji and published by Springer Nature. This book was released on 2020-04-22 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended to serve as an undergraduate textbook for a beginner’s course in engineering electromagnetics. The present book provides an easy and simplified understanding of the basic principles of electromagnetics. Abstract theory has been explained using real life examples making it easier for the reader to grasp the complicated concepts. An introductory chapter on vector calculus and the different coordinate systems equips the readers with the prerequisite knowledge to learn electromagnetics. The subsequent chapters can be grouped into four broad sections – electrostatics, magnetostatics, time varying fields, and applications of electromagnetics. Written in lucid terms, the text follows a sequential presentation of the topics, and discusses the relative merits and demerits of each method. Each chapter includes a number of examples which are solved rigorously along with pictorial representations. The book also contains about 400 figures and illustrations which help students visualize the underlying physical concepts. Several end-of-chapter problems are provided to test the key concepts and their applications. Thus the book offers a valuable resource for both students and instructors of electrical, electronics and communications engineering, and can also be useful as a supplementary text for undergraduate physics students.

Book Principles of Electromagnetic Waves and Materials

Download or read book Principles of Electromagnetic Waves and Materials written by Dikshitulu K. Kalluri and published by CRC Press. This book was released on 2017-11-14 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses primarily on senior undergraduates and graduates in Electromagnetics Waves and Materials courses. The book takes an integrative approach to the subject of electromagnetics by supplementing quintessential "old school" information and methods with instruction in the use of new commercial software such as MATLAB. Homework problems, PowerPoint slides, an instructor’s manual, a solutions manual, MATLAB downloads, quizzes, and suggested examination problems are included. Revised throughout, this new edition includes two key new chapters on artificial electromagnetic materials and electromagnetics of moving media.

Book Electromagnetic and Photonic Simulation for the Beginner  Finite Difference Frequency Domain in MATLAB

Download or read book Electromagnetic and Photonic Simulation for the Beginner Finite Difference Frequency Domain in MATLAB written by Raymond C. Rumpf and published by Artech House. This book was released on 2022-01-31 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book teaches the finite-difference frequency-domain (FDFD) method from the simplest concepts to advanced three-dimensional simulations. It uses plain language and high-quality graphics to help the complete beginner grasp all the concepts quickly and visually. This single resource includes everything needed to simulate a wide variety of different electromagnetic and photonic devices. The book is filled with helpful guidance and computational wisdom that will help the reader easily simulate their own devices and more easily learn and implement other methods in computational electromagnetics. Special techniques in MATLAB® are presented that will allow the reader to write their own FDFD programs. Key concepts in electromagnetics are reviewed so the reader can fully understand the calculations happening in FDFD. A powerful method for implementing the finite-difference method is taught that will enable the reader to solve entirely new differential equations and sets of differential equations in mere minutes. Separate chapters are included that describe how Maxwell’s equations are approximated using finite-differences and how outgoing waves can be absorbed using a perfectly matched layer absorbing boundary. With this background, a chapter describes how to calculate guided modes in waveguides and transmission lines. The effective index method is taught as way to model many three-dimensional devices in just two-dimensions. Another chapter describes how to calculate photonic band diagrams and isofrequency contours to quickly estimate the properties of periodic structures like photonic crystals. Next, a chapter presents how to analyze diffraction gratings and calculate the power coupled into each diffraction order. This book shows that many devices can be simulated in the context of a diffraction grating including guided-mode resonance filters, photonic crystals, polarizers, metamaterials, frequency selective surfaces, and metasurfaces. Plane wave sources, Gaussian beam sources, and guided-mode sources are all described in detail, allowing devices to be simulated in multiple ways. An optical integrated circuit is simulated using the effective index method to build a two-dimensional model of the 3D device and then launch a guided-mode source into the circuit. A chapter is included to describe how the code can be modified to easily perform parameter sweeps, such as plotting reflection and transmission as a function of frequency, wavelength, angle of incidence, or a dimension of the device. The last chapter is advanced and teaches FDFD for three-dimensional devices composed of anisotropic materials. It includes simulations of a crossed grating, a doubly-periodic guided-mode resonance filter, a frequency selective surface, and an invisibility cloak. The chapter also includes a parameter retrieval from a left-handed metamaterial. The book includes all the MATLAB codes and detailed explanations of all programs. This will allow the reader to easily modify the codes to simulate their own ideas and devices. The author has created a website where the MATLAB codes can be downloaded, errata can be seen, and other learning resources can be accessed. This is an ideal book for both an undergraduate elective course as well as a graduate course in computational electromagnetics because it covers the background material so well and includes examples of many different types of devices that will be of interest to a very wide audience.

Book Electromagnetics

    Book Details:
  • Author : Steven Ellingson
  • Publisher :
  • Release : 2019-12-13
  • ISBN : 9781949373912
  • Pages : pages

Download or read book Electromagnetics written by Steven Ellingson and published by . This book was released on 2019-12-13 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Engineering Electromagnetics

Download or read book Engineering Electromagnetics written by Nathan Ida and published by Springer. This book was released on 2015-03-20 with total page 1062 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides students with a thorough theoretical understanding of electromagnetic field equations and it also treats a large number of applications. The text is a comprehensive two-semester textbook. The work treats most topics in two steps – a short, introductory chapter followed by a second chapter with in-depth extensive treatment; between 10 to 30 applications per topic; examples and exercises throughout the book; experiments, problems and summaries. The new edition includes: modifications to about 30-40% of the end of chapter problems; a new introduction to electromagnetics based on behavior of charges; a new section on units; MATLAB tools for solution of problems and demonstration of subjects; most chapters include a summary. The book is an undergraduate textbook at the Junior level, intended for required classes in electromagnetics. It is written in simple terms with all details of derivations included and all steps in solutions listed. It requires little beyond basic calculus and can be used for self-study. The wealth of examples and alternative explanations makes it very approachable by students. More than 400 examples and exercises, exercising every topic in the book Includes 600 end-of-chapter problems, many of them applications or simplified applications Discusses the finite element, finite difference and method of moments in a dedicated chapter

Book Electromagnetic Waves  Materials  and Computation with MATLAB

Download or read book Electromagnetic Waves Materials and Computation with MATLAB written by Dikshitulu K. Kalluri and published by CRC Press. This book was released on 2016-04-19 with total page 862 pages. Available in PDF, EPUB and Kindle. Book excerpt: Readily available commercial software enables engineers and students to perform routine calculations and design without necessarily having a sufficient conceptual understanding of the anticipated solution. The software is so user-friendly that it usually produces a beautiful colored visualization of that solution, often camouflaging the fact that t

Book Numerical Analysis for Electromagnetic Integral Equations

Download or read book Numerical Analysis for Electromagnetic Integral Equations written by Karl F. Warnick and published by Artech House. This book was released on 2008 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction -- Surface integral equation formulations and the method of moments -- Error analysis of the EFIE / with W.C. Chew -- Error analysis of the MFIE and CFIE / with C.P. Davis -- Geometrical singularities and the flat strip -- Resonant structures -- Error analysis for 3D problems -- Higher-order basis functions / with A.F. Peterson -- Operator spectra and iterative solution methods.

Book Principles of Electrodynamics

Download or read book Principles of Electrodynamics written by Melvin Schwartz and published by Courier Corporation. This book was released on 2012-04-24 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 1988 Nobel Prize winner establishes the subject's mathematical background, reviews the principles of electrostatics, then introduces Einstein's special theory of relativity and applies it to topics throughout the book.

Book Electromagnetic Fields and Life

Download or read book Electromagnetic Fields and Life written by A. Presman and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: A broad region of the electromagnetic spectrum long assumed to have no influence on living systems under natural conditions has been critically re-examinjld over the past decade. This spectral region extends from the superhigh radio frequencies, through de creasing frequencies, to and including essentially static electric and magnetic fields. The author of this monograph, A. S. Presman, has reviewed not only the extensive Russian literatur!;"l, but also al most equally comprehensively the non-Russian literature, dealing with biological influences of these fields. Treated also is literature shedding some light on possible theoretical foundations for these phenomena. A substantial, rapidly increaSing number of studies in many laboratories and countries has now clearly established bio logical influences which are independent of the theoretically pre dictable, simple thermal effects. Indeed many of the effects are produced by field strengths very close to those within the natural environment. The author has, even more importantly, set forth a novel, imaginative general hypothesis in which it is postulated that such electromagnetic fields normally serve as conveyors of information from the environment to the organism, within the organism, and among organisms. He postulates that in the course of evolution or ganisms have come to employ these fields in conjunction with the well-known sensory, nervous, and endocrine systems in effecting coordination and integration.