Download or read book GARCH Models written by Christian Francq and published by John Wiley & Sons. This book was released on 2019-03-19 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a comprehensive and updated study of GARCH models and their applications in finance, covering new developments in the discipline This book provides a comprehensive and systematic approach to understanding GARCH time series models and their applications whilst presenting the most advanced results concerning the theory and practical aspects of GARCH. The probability structure of standard GARCH models is studied in detail as well as statistical inference such as identification, estimation, and tests. The book also provides new coverage of several extensions such as multivariate models, looks at financial applications, and explores the very validation of the models used. GARCH Models: Structure, Statistical Inference and Financial Applications, 2nd Edition features a new chapter on Parameter-Driven Volatility Models, which covers Stochastic Volatility Models and Markov Switching Volatility Models. A second new chapter titled Alternative Models for the Conditional Variance contains a section on Stochastic Recurrence Equations and additional material on EGARCH, Log-GARCH, GAS, MIDAS, and intraday volatility models, among others. The book is also updated with a more complete discussion of multivariate GARCH; a new section on Cholesky GARCH; a larger emphasis on the inference of multivariate GARCH models; a new set of corrected problems available online; and an up-to-date list of references. Features up-to-date coverage of the current research in the probability, statistics, and econometric theory of GARCH models Covers significant developments in the field, especially in multivariate models Contains completely renewed chapters with new topics and results Handles both theoretical and applied aspects Applies to researchers in different fields (time series, econometrics, finance) Includes numerous illustrations and applications to real financial series Presents a large collection of exercises with corrections Supplemented by a supporting website featuring R codes, Fortran programs, data sets and Problems with corrections GARCH Models, 2nd Edition is an authoritative, state-of-the-art reference that is ideal for graduate students, researchers, and practitioners in business and finance seeking to broaden their skills of understanding of econometric time series models.
Download or read book Dependence in Probability and Statistics written by Patrice Bertail and published by Springer Science & Business Media. This book was released on 2006-09-24 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an account of recent developments in the field of probability and statistics for dependent data. It covers a wide range of topics from Markov chain theory and weak dependence with an emphasis on some recent developments on dynamical systems, to strong dependence in times series and random fields. There is a section on statistical estimation problems and specific applications. The book is written as a succession of papers by field specialists, alternating general surveys, mostly at a level accessible to graduate students in probability and statistics, and more general research papers mainly suitable to researchers in the field.
Download or read book Handbook of Financial Time Series written by Torben Gustav Andersen and published by Springer Science & Business Media. This book was released on 2009-04-21 with total page 1045 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Financial Time Series gives an up-to-date overview of the field and covers all relevant topics both from a statistical and an econometrical point of view. There are many fine contributions, and a preamble by Nobel Prize winner Robert F. Engle.
Download or read book Nonparametric Statistical Methods And Related Topics A Festschrift In Honor Of Professor P K Bhattacharya On The Occasion Of His 80th Birthday written by Francisco J Samaniego and published by World Scientific. This book was released on 2011-09-16 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of 22 research papers by leading researchers in Probability and Statistics. Many of the papers are focused on themes that Professor Bhattacharya has published on research. Topics of special interest include nonparametric inference, nonparametric curve fitting, linear model theory, Bayesian nonparametrics, change point problems, time series analysis and asymptotic theory.This volume presents state-of-the-art research in statistical theory, with an emphasis on nonparametric inference, linear model theory, time series analysis and asymptotic theory. It will serve as a valuable reference to the statistics research community as well as to practitioners who utilize methodology in these areas of emphasis.
Download or read book Estimation in Conditionally Heteroscedastic Time Series Models written by Daniel Straumann and published by Springer Science & Business Media. This book was released on 2006-01-27 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: In his seminal 1982 paper, Robert F. Engle described a time series model with a time-varying volatility. Engle showed that this model, which he called ARCH (autoregressive conditionally heteroscedastic), is well-suited for the description of economic and financial price. Nowadays ARCH has been replaced by more general and more sophisticated models, such as GARCH (generalized autoregressive heteroscedastic). This monograph concentrates on mathematical statistical problems associated with fitting conditionally heteroscedastic time series models to data. This includes the classical statistical issues of consistency and limiting distribution of estimators. Particular attention is addressed to (quasi) maximum likelihood estimation and misspecified models, along to phenomena due to heavy-tailed innovations. The used methods are based on techniques applied to the analysis of stochastic recurrence equations. Proofs and arguments are given wherever possible in full mathematical rigour. Moreover, the theory is illustrated by examples and simulation studies.
Download or read book Econometric Modelling with Time Series written by Vance Martin and published by Cambridge University Press. This book was released on 2013 with total page 925 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Maximum likelihood estimation is a general method for estimating the parameters of econometric models from observed data. The principle of maximum likelihood plays a central role in the exposition of this book, since a number of estimators used in econometrics can be derived within this framework. Examples include ordinary least squares, generalized least squares and full-information maximum likelihood. In deriving the maximum likelihood estimator, a key concept is the joint probability density function (pdf) of the observed random variables, yt. Maximum likelihood estimation requires that the following conditions are satisfied. (1) The form of the joint pdf of yt is known. (2) The specification of the moments of the joint pdf are known. (3) The joint pdf can be evaluated for all values of the parameters, 9. Parts ONE and TWO of this book deal with models in which all these conditions are satisfied. Part THREE investigates models in which these conditions are not satisfied and considers four important cases. First, if the distribution of yt is misspecified, resulting in both conditions 1 and 2 being violated, estimation is by quasi-maximum likelihood (Chapter 9). Second, if condition 1 is not satisfied, a generalized method of moments estimator (Chapter 10) is required. Third, if condition 2 is not satisfied, estimation relies on nonparametric methods (Chapter 11). Fourth, if condition 3 is violated, simulation-based estimation methods are used (Chapter 12). 1.2 Motivating Examples To highlight the role of probability distributions in maximum likelihood estimation, this section emphasizes the link between observed sample data and 4 The Maximum Likelihood Principle the probability distribution from which they are drawn"-- publisher.
Download or read book Journal of the American Statistical Association written by and published by . This book was released on 2009 with total page 896 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book JOURNAL OF ECONOMETRICS written by THE JOURNAL OF ECONOMETRICS and published by . This book was released on 1999 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Statistical Theory and Method Abstracts written by and published by . This book was released on 2001 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Ibss Economics 1999 written by Compiled by the British Library of Political and Economic Science and published by Psychology Press. This book was released on 2000-12-07 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: IBSS is the essential tool for librarians, university departments, research institutions and any public or private institution whose work requires access to up-to-date and comprehensive knowledge of the social sciences
Download or read book Computational Finance and Financial Econometrics written by Eric Zivot and published by CRC Press. This book was released on 2017-01-15 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents mathematical, programming and statistical tools used in the real world analysis and modeling of financial data. The tools are used to model asset returns, measure risk, and construct optimized portfolios using the open source R programming language and Microsoft Excel. The author explains how to build probability models for asset returns, to apply statistical techniques to evaluate if asset returns are normally distributed, to use Monte Carlo simulation and bootstrapping techniques to evaluate statistical models, and to use optimization methods to construct efficient portfolios.
Download or read book Applications of State Space Models in Finance written by Sascha Mergner and published by Universitätsverlag Göttingen. This book was released on 2009 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: State space models play a key role in the estimation of time-varying sensitivities in financial markets. The objective of this book is to analyze the relative merits of modern time series techniques, such as Markov regime switching and the Kalman filter, to model structural changes in the context of widely used concepts in finance. The presented material will be useful for financial economists and practitioners who are interested in taking time-variation in the relationship between financial assets and key economic factors explicitly into account. The empirical part illustrates the application of the various methods under consideration. As a distinctive feature, it includes a comprehensive analysis of the ability of time-varying coefficient models to estimate and predict the conditional nature of systematic risks for European industry portfolios.
Download or read book Nonlinear Time Series written by Jianqing Fan and published by Springer Science & Business Media. This book was released on 2008-09-11 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book that integrates useful parametric and nonparametric techniques with time series modeling and prediction, the two important goals of time series analysis. Such a book will benefit researchers and practitioners in various fields such as econometricians, meteorologists, biologists, among others who wish to learn useful time series methods within a short period of time. The book also intends to serve as a reference or text book for graduate students in statistics and econometrics.
Download or read book Predictive Econometrics and Big Data written by Vladik Kreinovich and published by Springer. This book was released on 2017-11-30 with total page 788 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent research on predictive econometrics and big data. Gathering edited papers presented at the 11th International Conference of the Thailand Econometric Society (TES2018), held in Chiang Mai, Thailand, on January 10-12, 2018, its main focus is on predictive techniques – which directly aim at predicting economic phenomena; and big data techniques – which enable us to handle the enormous amounts of data generated by modern computers in a reasonable time. The book also discusses the applications of more traditional statistical techniques to econometric problems. Econometrics is a branch of economics that employs mathematical (especially statistical) methods to analyze economic systems, to forecast economic and financial dynamics, and to develop strategies for achieving desirable economic performance. It is therefore important to develop data processing techniques that explicitly focus on prediction. The more data we have, the better our predictions will be. As such, these techniques are essential to our ability to process huge amounts of available data.
Download or read book Essays on Financial Time Series written by Isao Ishida and published by . This book was released on 2004 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Handbook of Financial Econometrics written by Yacine Ait-Sahalia and published by Elsevier. This book was released on 2009-10-19 with total page 809 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of original articles—8 years in the making—shines a bright light on recent advances in financial econometrics. From a survey of mathematical and statistical tools for understanding nonlinear Markov processes to an exploration of the time-series evolution of the risk-return tradeoff for stock market investment, noted scholars Yacine Aït-Sahalia and Lars Peter Hansen benchmark the current state of knowledge while contributors build a framework for its growth. Whether in the presence of statistical uncertainty or the proven advantages and limitations of value at risk models, readers will discover that they can set few constraints on the value of this long-awaited volume. - Presents a broad survey of current research—from local characterizations of the Markov process dynamics to financial market trading activity - Contributors include Nobel Laureate Robert Engle and leading econometricians - Offers a clarity of method and explanation unavailable in other financial econometrics collections
Download or read book Empirical Asset Pricing written by Wayne Ferson and published by MIT Press. This book was released on 2019-03-12 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.