Download or read book Encyclopedia of Applied Electrochemistry written by Gerhard Kreysa and published by Springer. This book was released on 2014-04-16 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: While electrochemistry deals with the interrelation of electrical and chemical phenomena, applied electrochemistry is the interface between fundamental science and practical applications. It is vitally important for our industrial society of today and even more so for its future. A successful response to global challenges such as securing energy supply, developing energy-efficient and sustainable processes and materials, environmentally friendly technologies, or monitoring physiological processes for health care requires electrochemical research and engineering. The Encyclopedia of Applied Electrochemistry provides an authoritative compilation of entries dealing with all applied aspects of electrochemistry, including basic theoretical concepts, and instrumentation. As a unique, one-stop resource for sound and digested knowledge in this field, the Encyclopedia of Applied Electrochemistry comprises the first applications-oriented interdisciplinary work on the critical technologies underlying key advances such as energy efficiency (e.g. batteries for electric cars, etc.), green and sustainable chemical industries, new materials (corrosion resistant and low-friction), and biomedical sensors.
Download or read book Ion Exchange Membrane Separation Processes written by H Strathmann and published by Elsevier. This book was released on 2004-01-29 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today, membranes and membrane processes are used as efficient tools for the separation of liquid mixtures or gases in the chemical and biomedical industry, in water desalination and wastewater purification. Despite the fact that various membrane processes, like reverse osmosis, are described in great detail in a number of books, processes involving ion-exchange membranes are only described in a fragmented way in scientific journals and patents; even though large industrial applications, like electrodialysis, have been around for over half a century. Therefore, this book is emphasizing on the most relevant aspects of ion-exchange membranes. This book provides a comprehensive overview of ion-exchange membrane separation processes covering the fundamentals as well as recent developments of the different products and processes and their applications. The audience for this book is heterogeneous, as it includes plant managers and process engineers as well as research scientists and graduate students. The separate chapters are based on different topics. The first chapter describes the relevant Electromembrane processes in a general overview. The second chapter explains thermodynamic and physicochemical fundamentals. The third chapter gives information about ion-exchange membrane preparation techniques, while the fourth and fifth chapter discusses the processes as unit operations giving examples for the design of specific plants. - First work on the principles and applications of electrodialysis and related separation processes - Presently no other comprehensive work that can serve as both reference work and text book is available - Book is suited for teaching students and as source for detailed information
Download or read book Device and Materials Modeling in PEM Fuel Cells written by Stephen J. Paddison and published by Springer Science & Business Media. This book was released on 2008-10-15 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational studies on fuel cell-related issues are increasingly common. These studies range from engineering level models of fuel cell systems and stacks to molecular level, electronic structure calculations on the behavior of membranes and catalysts, and everything in between. This volume explores this range. It is appropriate to ask what, if anything, does this work tell us that we cannot deduce intuitively? Does the emperor have any clothes? In answering this question resolutely in the affirmative, I will also take the liberty to comment a bit on what makes the effort worthwhile to both the perpetrator(s) of the computational study (hereafter I will use the blanket terms modeler and model for both engineering and chemical physics contexts) and to the rest of the world. The requirements of utility are different in the two spheres. As with any activity, there is a range of quality of work within the modeling community. So what constitutes a useful model? What are the best practices, serving both the needs of the promulgator and consumer? Some of the key com- nents are covered below. First, let me provide a word on my ‘credentials’ for such commentary. I have participated in, and sometimes initiated, a c- tinuous series of such efforts devoted to studies of PEMFC components and cells over the past 17 years. All that participation was from the experim- tal, qualitative side of the effort.
Download or read book New Trends in Ion Exchange Studies written by Selcan Karakus and published by BoD – Books on Demand. This book was released on 2018-11-07 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers new systems in technology that have developed our knowledge of ion exchange. This book discusses ion exchange resins to enhance cell growth; anion exchange membrane; nanosystems in ion exchange and ion exchange in environmental applications. The ion exchange system is used in bionanotechnology, cosmetic industry and water treatment.
Download or read book PEM Water Electrolysis written by Dmitri Bessarabov and published by Academic Press. This book was released on 2018-08-04 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: PEM Water Electrolysis, a volume in the Hydrogen Energy and Fuel Cell Primers series presents the most recent advances in the field. It brings together information that has thus far been scattered in many different sources under one single title, making it a useful reference for industry professionals, researchers and graduate students. Volumes One and Two allow readers to identify technology gaps for commercially viable PEM electrolysis systems for energy applications and examine the fundamentals of PEM electrolysis and selected research topics that are top of mind for the academic and industry community, such as gas cross-over and AST protocols. The book lays the foundation for the exploration of the current industrial trends for PEM electrolysis, such as power to gas application and a strong focus on the current trends in the application of PEM electrolysis associated with energy storage. - Presents the fundamentals and most current knowledge in proton exchange membrane water electrolyzers - Explores the technology gaps and challenges for commercial deployment of PEM water electrolysis technologies - Includes unconventional systems, such as ozone generators - Brings together information from many different sources under one single title, making it a useful reference for industry professionals, researchers and graduate students alike
Download or read book Advanced water splitting technologies development Best practices and protocols written by Ellen B. Stechel and published by Frontiers Media SA. This book was released on 2023-04-04 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Direct Methanol Fuel Cell Technology written by Kingshuk Dutta and published by Elsevier. This book was released on 2020-02-25 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: Direct Methanol Fuel Cell Technology presents the overall progress witnessed in the field of DMFC over the past decade, highlighting the components, materials, functions, properties and features, designs and configurations, operations, modelling, applications, pros and cons, social, political and market penetration, economics and future directions. The book discusses every single aspect of DMFC device technology, the associated advantages and drawbacks of state-of-the-art materials and design, market opportunities and commercialization aspects, and possible future directions of research and development. This book, containing critical analyses and opinions from experts around the world, will garner considerable interest among actual users/scientists/experts. - Analyzes developments of membrane electrolytes, electrodes, catalysts, catalyst supports, bipolar plates, gas diffusion layers and flow channels as critical components of direct methanol fuel cells - Includes modeling of direct methanol fuel cells to understand their scaling up potentials - Discusses commercial aspects of direct methanol fuel cells in terms of market penetration, end application, cost, viability, reliability, social and commercial perception, drawbacks and prospects
Download or read book Polymer Membranes for Fuel Cells written by Javaid Zaidi and published by Springer Science & Business Media. This book was released on 2010-07-15 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the late-1960’s, perfluorosulfonic acid (PFSAs) ionomers have dominated the PEM fuel cell industry as the membrane material of choice. The “gold standard’ amongst the many variations that exist today has been, and to a great extent still is, DuPont’s Nafion® family of materials. However, there is significant concern in the industry that these materials will not meet the cost, performance, and durability requirementsnecessary to drive commercialization in key market segments – es- cially automotive. Indeed, Honda has already put fuel cell vehicles in the hands of real end users that have home-grown fuel cell stack technology incorporating hydrocarbon-based ionomers. “Polymer Membranes in Fuel Cells” takes an in-depth look at the new chem- tries and membrane technologies that have been developed over the years to address the concerns associated with the materials currently in use. Unlike the PFSAs, which were originally developed for the chlor-alkali industry, the more recent hydrocarbon and composite materials have been developed to meet the specific requirements of PEM Fuel Cells. Having said this, most of the work has been based on derivatives of known polymers, such as poly(ether-ether ketones), to ensure that the critical requirement of low cost is met. More aggressive operational requi- ments have also spurred the development on new materials; for example, the need for operation at higher temperature under low relative humidity has spawned the creation of a plethora of new polymers with potential application in PEM Fuel Cells.
Download or read book Materials for Energy Conversion Devices written by C C Sorrell and published by Elsevier. This book was released on 2005-10-30 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the finite capacity and pollution problems of fossil fuels grow more pressing, new sources of more sustainable energy are being developed. Materials for energy conversion devices summarises the key research on new materials which can be used to generate clean and renewable energy or to help manage problems from existing energy sources.The book discusses the range of materials that can be used to harness and convert solar energy in particular, including the properties of oxide materials and their use in producing hydrogen fuel. It covers thermoelectric materials and devices for power generation, ionic conductors and new types of fuel cell. There are also chapters on the use of such materials in the immobilisation of nuclear waste and as electrochemical gas sensors for emission control.With its distinguished editors and international team of contributors, Materials for energy conversion devices is a standard reference for all those researching and developing a new generation of materials and technologies for our energy need. - Detailed coverage of solar energy and thermoelectric conversion - Comprehensive survey of new developments in this exciting field - Edited by leading experts in the field with contributions from an international team of authors
Download or read book Ion and Molecule Transport in Membrane Systems written by Victor Nikonenko and published by MDPI. This book was released on 2021-08-10 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Membranes play an enormous role in our life. Biological cell membranes control the fluxes of substances in and out of cells. Artificial membranes are widely used in numerous applications including “green” separation processes in chemistry, agroindustry, biology, medicine; they are used as well in energy generation from renewable sources. They largely mimic the structure and functions of biological membranes. The similarity in the structure leads to the similarity in the properties and the approaches to study the laws governing the behavior of both biological and artificial membranes. In this book, some physico-chemical and chemico-physical aspects of the structure and behavior of biological and artificial membranes are investigated.
Download or read book The Chemistry of Membranes Used in Fuel Cells written by Shulamith Schlick and published by John Wiley & Sons. This book was released on 2018-02-13 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examines the important topic of fuel cell science by way of combining membrane design, chemical degradation mechanisms, and stabilization strategies This book describes the mechanism of membrane degradation and stabilization, as well as the search for stable membranes that can be used in alkaline fuel cells. Arranged in ten chapters, the book presents detailed studies that can help readers understand the attack and degradation mechanisms of polymer membranes and mitigation strategies. Coverage starts from fundamentals and moves to different fuel cell membrane types and methods to profile and analyze them. The Chemistry of Membranes Used in Fuel Cells: Degradation and Stabilization features chapters on: Fuel Cell Fundamentals: The Evolution of Fuel Cells and their Components; Degradation Mechanism of Perfluorinated Membranes; Ranking the Stability of Perfluorinated Membranes Used in Fuel Cells to Attack by Hydroxyl Radicals; Stabilization Mechanism of Perfluorinated Membranes by Ce(III) and Mn(II); Hydrocarbon Proton Exchange Membranes; Stabilization of Perfluorinated Membranes Using Nanoparticle Additives; Degradation Mechanism in Aquivion Perfluorinated Membranes and Stabilization Strategies; Anion Exchange Membrane Fuel Cells: Synthesis and Stability; In-depth Profiling of Degradation Processes in Nafion Due to Pt Dissolution and Migration into the Membrane; and Quantum Mechanical Calculations of the Degradation Mechanism in Perfluorinated Membranes. Brings together aspects of membrane design, chemical degradation mechanisms and stabilization strategies Emphasizes chemistry of fuel cells, which is underemphasized in other books Includes discussion of fuel cell performance and behavior, analytical profiling methods, and quantum mechanical calculations The Chemistry of Membranes Used in Fuel Cells is an ideal book for polymer scientists, chemists, chemical engineers, electrochemists, material scientists, energy and electrical engineers, and physicists. It is also important for grad students studying advanced polymers and applications.
Download or read book Radiation Technologies and Applications in Materials Science written by Subhendu Ray Chowdhury and published by CRC Press. This book was released on 2022-12-30 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains various kinds of non-ionizing and high-energy radiations, their interaction with materials and chemical reactions, and conditions of various kinds of materials development technologies including applications. It covers a processing-structure-property relationship and radiations used in developing many advanced materials used in various fields. It highlights application-oriented materials synthesis and modification covering a wide variety of materials such as plastics, rubber, thermo-set, ceramics, and so forth by various radiations. Features: Explains ionizing and non-ionizing radiation-assisted materials development technologies, for polymers, ceramics, metals, and carbons. Covers radiation-assisted synthesis, processing, and modification of all kinds of materials. Provides comparative studies, merits, demerits, and applications very systematically. Criss-crosses polymers science and technology, radiation technology, advanced materials technology, biomaterials technology, and so forth. Includes a section on 3D printing by LASER melting of CoCr alloys. This book is aimed at researchers and graduate students in materials science, radiation chemistry and physics, and polymer and other materials processing.
Download or read book In Depth on the Fouling and Antifouling of Ion Exchange Membranes written by Las^aad Dammak and published by Mdpi AG. This book was released on 2021-12-31 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of ion-exchange membranes (IEMs) has accelerated over the past two decades in a wide variety of industrial processes (electrodialysis, electro-electrodialysis, electrolysis, dialysis, etc.) for applications related to chemical, pharmaceutical and food industries, energy production, water treatments, etc. Organic and mineral fouling (or scaling) phenomena are two major factors limiting the efficiencies of IEMs processes and performances (reduction of the IEMs selectivity and stability, increase of their electrical resistance, deduction of the energy efficiency of the process, etc.) leading to significant economic losses. The current washing, cleaning and sterilization processes (anti-fouling treatments) make it possible to recover some of the IEMs performances, but frequently induce degradation on the membrane material. Another essential point in the fouling studies is the choice of the best and appropriate analysis and diagnostic technique to evaluate this or that magnitude, or observe this or that object on the surface or in the mass of the membrane. This book is focused on recent advancements in techniques for diagnosing and characterizing the fouling effects on membranes, in mechanisms governing this complex phenomenon, and in the various innovative and economically viable solutions for reducing fouling.
Download or read book Redox Flow Batteries written by Huamin Zhang and published by CRC Press. This book was released on 2017-11-22 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Flow batteries have received attention in large-scale energy storage due to their flexible design, high safety, high energy efficiency, and environmental friendliness. In recent years, they have been rapidly developed and tested in a variety of scales that prove their feasibility and advantages of use. As energy becomes a global focus, it is important to consider flow battery systems. This book offers a detailed introduction to the function of different kinds of redox flow batteries, including vanadium flow batteries, as well as the electrochemical processes for their development, materials and components, applications, and near future prospects. Redox Flow Batteries: Fundamentals and Applications will give readers a full understanding of flow batteries from fundamentals to commercial applications.
Download or read book Fuel Cells written by Klaus-Dieter Kreuer and published by Springer Science & Business Media. This book was released on 2012-12-14 with total page 795 pages. Available in PDF, EPUB and Kindle. Book excerpt: The expected end of the “oil age” will lead to increasing focus and reliance on alternative energy conversion devices, among which fuel cells have the potential to play an important role. Not only can phosphoric acid and solid oxide fuel cells already efficiently convert today’s fossil fuels, including methane, into electricity, but other types of fuel cells, such as polymer electrolyte membrane fuel cells, have the potential to become the cornerstones of a possible future hydrogen economy. Featuring 21 peer-reviewed entries from the Encyclopedia of Sustainability Science and Technology, Fuel Cells offers concise yet comprehensive coverage of the current state of research and identifies key areas for future investigation. Internationally renowned specialists provide authoritative introductions to a wide variety of fuel cell types, and discuss materials, components, and systems for these technologies. The entries also cover sustainability and marketing considerations, including comparisons of fuel cells with alternative technologies.
Download or read book Membranes for Water Treatment written by Klaus-Viktor Peinemann and published by John Wiley & Sons. This book was released on 2010-11-29 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: This ready reference on Membrane Technologies for Water Treatment, is an invaluable source detailing sustainable, emerging processes, to provide clean, energy saving and cost effective alternatives to conventional processes. The editors are internationally renowned leaders in the field, who have put together a first-class team of authors from academia and industry to present a highly approach to the subject. The book is an instrumental tool for Process Engineers, Chemical Engineers, Process Control Technicians, Water Chemists, Environmental Chemists, Materials Scientists and Patent Lawyers.
Download or read book Alkaline Anion Exchange Membranes for Fuel Cells written by Jince Thomas and published by John Wiley & Sons. This book was released on 2024-02-05 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: Alkaline Anion Exchange Membranes for Fuel Cells Build the fuel cells of the future with this cutting-edge material Alkaline anion exchange membranes (AAEMs) are cutting-edge polyelectrolyte materials with growing renewable energy applications including fuel cells, batteries, hydrogen electrolyzers and electrodialysis technologies. Their use in relatively new alkaline exchange membrane fuel cells (AEMFCs) is designed to produce cost-effective clean energy (electricity) produced by a chemical reaction. Rigorous studies are being conducted to meet the requirements of AAEMs precisely tailored for high anion conductivity and durability for future high energy efficient devices. Hence, over the past few years the academic and industrial scientific communities have explored various polymeric, composite and inorganic materials and studied their properties as a potential AAEM. The accumulated literature in this area of investigation is vast and in order to provide the community with the tools needed to strive forward, there is a clear need to condense this information in a single volume. Alkaline Anion Exchange Membranes for Fuel Cells meets this need with a comprehensive overview of the properties of these membranes and their applications. The book considers recent developments, common challenges, and the long-term prospects for this field of research and engineering. It constitutes a one-stop resource for the development and production of AAEM fuel cells and related electrochemical applications. Alkaline Anion Exchange Membranes for Fuel Cells readers will find: Discussion of electrochemical applications like redox flow batteries, water electrolysis, and many more Detailed treatment of specially tailored cationic groups such as quaternary ammonium and guanidinium Expert advice on efficient fabrication and electrode assembly Alkaline Anion Exchange Membranes for Fuel Cells is ideal for electrochemists, materials scientists, polymer chemists, electrical engineers, and anyone working in power technology or related fields.