EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Early Soft Error Reliability Assessment of Convolutional Neural Networks Executing on Resource Constrained IoT Edge Devices

Download or read book Early Soft Error Reliability Assessment of Convolutional Neural Networks Executing on Resource Constrained IoT Edge Devices written by Geancarlo Abich and published by Springer Nature. This book was released on 2023-01-01 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes an extensive and consistent soft error assessment of convolutional neural network (CNN) models from different domains through more than 14.8 million fault injections, considering different precision bit-width configurations, optimization parameters, and processor models. The authors also evaluate the relative performance, memory utilization, and soft error reliability trade-offs analysis of different CNN models considering a compiler-based technique w.r.t. traditional redundancy approaches.

Book TinyML

    Book Details:
  • Author : Pete Warden
  • Publisher : O'Reilly Media
  • Release : 2019-12-16
  • ISBN : 1492052019
  • Pages : 504 pages

Download or read book TinyML written by Pete Warden and published by O'Reilly Media. This book was released on 2019-12-16 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size

Book Towards Deployment of Deep Neural Networks on Resource constrained Embedded Systems

Download or read book Towards Deployment of Deep Neural Networks on Resource constrained Embedded Systems written by Boyu Zhang and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Neural Network (DNNs) have emerged as an important computational structure that facilitate important tasks such as speech and image recognition, autonomous vehicles, etc. In order to achieve better performance, such as higher classification accuracy, modern DNN models are designed to be more complex in terms of network structure and larger in terms of number of weights in the model. This imposes a great challenge for realizing DNN models on computation devices, especially those resource-constrained devices such as embedded and mobile systems. The challenge arises from three aspects: computation, memory, and energy consumption. First, the number of computations per inference required by modern large and complex DNN models is huge, whereas the computation capability available in the given systems may not be as powerful as a modern GPU or a dedicated processing unit. So, accomplishing the required computation within certain latency is an open challenge. Second, the conflict between the limited on-board memory resource and the static/run-time memory requirement of large DNN models also need to be resolved. Third, the very energy-consuming inference process places a heavy burden on edge devices' battery life. Since the majority of the total energy is consumed by data movement, the goal is not only to fit the DNN model into the system but also to optimize off-chip memory access in order to minimize energy consumption during inference. This dissertation aims to make contributions towards efficient realizations of DNN models on resource-constrained systems. Our contributions can be categorized into three aspects. First, we propose a structure simplification procedure that can identify and eliminate redundant neurons in any layer of a trained DNN model. Once the redundant neurons are identified and removed, the corresponding edges connected to those neurons will be eliminated as well. Then the new weight matrix is calculated directly by our procedure, while retraining may be applied to further recover the lost accuracy if necessary. We also propose a high-level energy model to better explore the tradeoffs in the design space during neuron elimination. Since both the neurons and their edges are eliminated, the memory and energy requirements are also get alleviated. Furthermore, the procedure also allows exploring the tradeoff between model performance and implementation cost. Second, since the convolutional layer is the most energy-consuming and computation heavy layer in Convolutional Neural Networks (CNNs), we propose a structural pruning technique to prune the input channels in convolutional layers. Once the redundant channels are identified and removed, the corresponding convolutional filters will be pruned as well. There significant reduction in static/run-time memory, computation, and energy consumption can be achieved. Moreover, the resulting pruned model is more efficient in terms of network architecture rather than specific weight values, which makes the theoretical reductions of implementation cost much easier to be harvested by existing hardware and software. Third, instead of blindly sending data to cloud and relying on cloud to perform inference, we propose to utilize the computation power of IoT devices to accomplish deep learning tasks while achieving higher degree of customization and privacy level. Specifically, we propose to incorporate a small-sized local customized DNN model to work with a large-sized general DNN model by using a "Mixture of Experts" architecture. Therefore, with minimal implementation overhead, the customized data can be handled by the small-sized DNN to achieve better performance without compromising the performance on general data. Our experiments show that the MoE architecture outperforms popular alternatives such as fine-tuning, bagging, independent ensemble, and multiple choice learning

Book Efficient Implementation of Deep Neural Networks on Resource constrained Devices

Download or read book Efficient Implementation of Deep Neural Networks on Resource constrained Devices written by Maedeh Hemmat and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, Deep Neural Networks (DNNs) have emerged as an impressively successful model to perform complicated tasks including object classification, speech recognition, autonomous vehicle, etc. To provide better accuracy, state-of-the-art neural network models are designed to be deeper (i.e., having more layers) and larger (i.e., having more parameters within each layer). It subsequently has increased the computational and memory costs of DNNs, mandating their efficient hardware implementation, especially on resource-constrained devices such as embedded systems and mobile devices. This challenge can be investigated from two aspects: computation and storage. On one hand, state-of-the-art DNNs require the execution of billions of operations for each inference. This is while the computational power of embedded systems is tightly limited. On the other hand, DNN models require storage of several Megabytes of parameters which can't fit in the on-chip memory of these devices. More importantly, these systems are usually battery-powered with a limited energy budget to access memory and perform computations.This dissertation aims to make contributions towards improving the efficiency of DNN deployments on resource-constraint devices. Our contributions can be categorized into three aspects. First, we propose an iterative framework that enables dynamic reconfiguration of an already-trained Convolutional Neural Network (CNN) in hardware during inference. The reconfiguration enables input-dependent approximation of the CNN at run-time, leading to significant energy savings without any significant degradation in classification accuracy. Our proposed framework breaks each inference into several iterations and fetches only a fraction of the weights from off-chip memory at each iteration to perform the computations. It then decides to either terminate the network or fetch more weights to do the inference, based on the difficulty of the received input. The termination condition can be also adjusted to trade off classification accuracy and energy consumption at run-time. Second, we exploit the user-dependent behavior of DNNs and propose a personalized inference framework that prunes an already-trained neural network model based on the preferences of individual users and without the need to retrain the network. Our key observation is that an individual user may only encounter a tiny fraction of the trained classes on a regular basis. Hence, storing trained models (pruned or not) for all possible classes on local devices is costly and unnecessary for the user's needs. Our personalized framework minimizes the memory, computation, and energy consumption of the network on the local device as it processes neurons on a need basis (i.e., only when the user expects to encounter a specific output class). Third, we propose a framework for distributed inference of DNNs across multiple edge devices to improve the communication and latency overheads. Our framework utilizes many parallel, independent-running edge devices which communicate only once to a single 'back-end' device (also an edge device) to aggregate their predictions and produce the result of the inference. To achieve this distributed implementation, our framework first partitions the classes of the complex DNN into subsets to be assigned across the available edge devices while considering the computational resources of each device. The DNN is then aggressively pruned for each device for its set of assigned classes. Each smaller DNN (SNN) is further configured to return a 'Don't Know' when encountered by an input from an unassigned class. Each SNN is generated from the complex DNN at the beginning and then loaded onto its corresponding edge device, without the need for retraining. To perform inference, each SNN will perform an inference based on its received input.

Book Efficient Inference Using Deep Convolutional Neural Networks on Resource constrained Platforms

Download or read book Efficient Inference Using Deep Convolutional Neural Networks on Resource constrained Platforms written by Mohammad Motamedi and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Convolutional Neural Networks (CNNs) exhibit remarkable performance in many pattern recognition, segmentation, classification, and comprehension tasks that were widely considered open problems for most of the computing history. For example, CNNs are shown to outperform humans in certain visual object recognition tasks. Given the significant potential of CNNs in advancing autonomy and intelligence in systems, the Internet of Things (IoT) research community has witnessed a surge in demand for CNN-enabled data processing, technically referred to as inference, for critical tasks, such as visual, voice and language comprehension. Inference using modern CNNs involves billions of operations on millions of parameters, and thus their deployment requires significant compute, storage, and energy resources. However, such resources are scarce in many resource-constrained IoT applications. Designing an efficient CNN architecture is the first step in alleviating this problem. Use of asymmetric kernels, breadth control techniques, and reduce-expand structures are among the most important approaches that can effectively decrease CNNs parameter budget and their computational intensity. The architectural efficiency can be further improved by eliminating ineffective neurons using pruning algorithms, and quantizing the parameters to decrease the model size. Hardware-driven optimization is the subsequent step in addressing the computational demands of deep neural networks. Mobile System on Chips (SoCs), which usually include a mobile GPU, a DSP, and a number of CPU cores, are great candidates for CNN inference on embedded platforms. Depending on the application, it is also possible to develop customized FPGA-based and ASIC-based accelerators. ASIC-based acceleration drastically outperforms other approaches in terms of both power consumption and execution time. However, using this approach is reasonable only if designing a new chip is economically justifiable for the target application. This dissertation aims to bridge the gap between computational demands of CNNs and computational capabilities of embedded platforms. We contend that one has to strike a judicious balance between functional requirements of a CNN, and its resource requirements, for an IoT application to be able to utilize the CNN. We investigate several concrete formulations of this broad concept, and propose effective approaches for addressing the identified challenges. First, we target platforms that are equipped with reconfigurable fabric, such as Field Programmable Gate Arrays (FPGA), and offer a framework for generation of optimized FPGA-based CNN accelerators. Our solution leverages an analytical approach to characterization and exploration of the accelerator design space through which, it synthesizes an efficient accelerator for a given CNN on a specific FPGA. Second, we investigate the problem of CNN inference on mobile SoCs, propose effective approaches for CNN parallelization targeting such platforms, and explore the underlying tradeoffs. Finally, in the last part of this dissertation, we investigate utilization of an existing optimized CNN model to automatically generate a competitive CNN for an IoT application whose objects of interest are a fraction of categories that the original CNN was designed to classify, such that the resource requirement of inference using the synthesized CNN is proportionally scaled down. We use the term resource scalability to refer to this concept and propose solutions for automated synthesis of context-aware, resource-scalable CNNs that meet the functional requirements of the target IoT application at fraction of the resource requirements of the original CNN.

Book IoT Fundamentals

    Book Details:
  • Author : David Hanes
  • Publisher : Cisco Press
  • Release : 2017-05-30
  • ISBN : 0134307089
  • Pages : 781 pages

Download or read book IoT Fundamentals written by David Hanes and published by Cisco Press. This book was released on 2017-05-30 with total page 781 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today, billions of devices are Internet-connected, IoT standards and protocols are stabilizing, and technical professionals must increasingly solve real problems with IoT technologies. Now, five leading Cisco IoT experts present the first comprehensive, practical reference for making IoT work. IoT Fundamentals brings together knowledge previously available only in white papers, standards documents, and other hard-to-find sources—or nowhere at all. The authors begin with a high-level overview of IoT and introduce key concepts needed to successfully design IoT solutions. Next, they walk through each key technology, protocol, and technical building block that combine into complete IoT solutions. Building on these essentials, they present several detailed use cases, including manufacturing, energy, utilities, smart+connected cities, transportation, mining, and public safety. Whatever your role or existing infrastructure, you’ll gain deep insight what IoT applications can do, and what it takes to deliver them. Fully covers the principles and components of next-generation wireless networks built with Cisco IOT solutions such as IEEE 802.11 (Wi-Fi), IEEE 802.15.4-2015 (Mesh), and LoRaWAN Brings together real-world tips, insights, and best practices for designing and implementing next-generation wireless networks Presents start-to-finish configuration examples for common deployment scenarios Reflects the extensive first-hand experience of Cisco experts

Book Memory aware Fusing and Tiling of Neural Networks for Accelerated Edge Inference

Download or read book Memory aware Fusing and Tiling of Neural Networks for Accelerated Edge Inference written by Jackson Taylor Farley and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rising research challenge is running costly machine learning (ML) networks locally on resource-constrained edge devices. ML networks with large convolutional layers can easily exceed available memory, increasing latency due to excessive swapping. Previous memory reduction techniques such as pruning and quantization reduce model accuracy and often require retraining. Alternatively, distributed methods partition the convolutions into equivalent smaller sub-computations, but the implementations introduce communication costs and require a network of devices. However, a distributed partitioning approach can also be used to run in a reduced memory footprint on a single device by subdividing the network into smaller operations. This report extends prior work on distributed partitioning using tiling and fusing of convolutional layers into a memory-aware execution on a single device. Our approach extends prior fusing strategies to allow for two groups of convolutional layers that are fused and tiled independently. This approach reduces overhead via data reuse, and reduces the memory footprint further. We also propose a memory usage predictor coupled with a search algorithm to provide fusing and tiling configurations for an arbitrary set of convolutional layers. When applied to the YOLOv2 object detection network, results show that our approach can run in less than half the memory, and with a speedup of up to 2.78 under severe memory constraints. Additionally, our algorithm will return a configuration with a latency that is within 6% of the best latency measured in a manual search

Book Federated Learning

    Book Details:
  • Author : Qiang Qiang Yang
  • Publisher : Springer Nature
  • Release : 2022-06-01
  • ISBN : 3031015851
  • Pages : 189 pages

Download or read book Federated Learning written by Qiang Qiang Yang and published by Springer Nature. This book was released on 2022-06-01 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: How is it possible to allow multiple data owners to collaboratively train and use a shared prediction model while keeping all the local training data private? Traditional machine learning approaches need to combine all data at one location, typically a data center, which may very well violate the laws on user privacy and data confidentiality. Today, many parts of the world demand that technology companies treat user data carefully according to user-privacy laws. The European Union's General Data Protection Regulation (GDPR) is a prime example. In this book, we describe how federated machine learning addresses this problem with novel solutions combining distributed machine learning, cryptography and security, and incentive mechanism design based on economic principles and game theory. We explain different types of privacy-preserving machine learning solutions and their technological backgrounds, and highlight some representative practical use cases. We show how federated learning can become the foundation of next-generation machine learning that caters to technological and societal needs for responsible AI development and application.

Book Running Deep Learning Applications on Resource Constrained Devices

Download or read book Running Deep Learning Applications on Resource Constrained Devices written by Naveen Vedula and published by . This book was released on 2021 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: The high accuracy of Deep Neural Networks (DNN) come at the expense of high computational cost and memory requirements. During inference, the data is often collected on the edge device which are resource-constrained. The existing solutions for edge deployment include i) executing the entire DNN on the edge (EDGE-ONLY), ii) sending the input from edge to cloud where the DNN is processed (CLOUD-ONLY), and iii) splitting the DNN to execute partially on the edge and partially on the cloud (SPLIT). The choice of deployment between EDGE-ONLY, CLOUD-ONLY and SPLIT is determined by several operating constraints such as device resources and network speed, and application constraints such as latency and accuracy. The EDGE-ONLY approach requires compact DNN with low compute and memory requirements. Thus, the emerging class of DNNs employ low-rank convolutions (LRCONVs) which reduce one or more dimensions compared to the spatial convolutions (CONV). Prior research in hardware accelerators has largely focused on CONVs. The LRCONVs such as depthwise and pointwise convolutions exhibit lower arithmetic intensity and lower data reuse. Thus, LRCONVs result in low hardware utilization and high latency. In our first work, we systematically explore the design space of Cross-layer dataflows to exploit data reuse across layers for emerging DNNs in EDGE-ONLY scenarios. We develop novel fine-grain cross-layer dataflows for LRCONVs that support partial loop dimension completion. Our tool, X-Layer decouples the nested loops in a pipeline and combines them to create a common outer dataflow and several inner dataflows. The CLOUD-ONLY approach can suffer from high latency due to the high transmission cost of large input data from the edge to the cloud. This could be a problem, especially for latency-critical applications. Thankfully, the SPLIT approach reduces latency compared to the CLOUD-ONLY approach. However, existing solutions only split the DNN in floating-point precision. Executing floating-point precision on the edge device can occupy large memory and reduce the potential options for SPLIT solutions. In our second work, we expand and explore the search space of SPLIT solutions by jointly applying mixed-precision post-training quantization and DNN graph split. Our work, Auto-Split finds a balance in the trade-off among the model accuracy, edge device capacity, transmission cost, and the overall latency.

Book IoT Streams for Data Driven Predictive Maintenance and IoT  Edge  and Mobile for Embedded Machine Learning

Download or read book IoT Streams for Data Driven Predictive Maintenance and IoT Edge and Mobile for Embedded Machine Learning written by Joao Gama and published by Springer Nature. This book was released on 2021-01-09 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes selected papers from the Second International Workshop on IoT Streams for Data-Driven Predictive Maintenance, IoT Streams 2020, and First International Workshop on IoT, Edge, and Mobile for Embedded Machine Learning, ITEM 2020, co-located with ECML/PKDD 2020 and held in September 2020. Due to the COVID-19 pandemic the workshops were held online. The 21 full papers and 3 short papers presented in this volume were thoroughly reviewed and selected from 35 submissions and are organized according to the workshops and their topics: IoT Streams 2020: Stream Learning; Feature Learning; ITEM 2020: Unsupervised Machine Learning; Hardware; Methods; Quantization.

Book Artificial Intelligence in Healthcare

Download or read book Artificial Intelligence in Healthcare written by Adam Bohr and published by Academic Press. This book was released on 2020-06-21 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. Highlights different data techniques in healthcare data analysis, including machine learning and data mining Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks Includes applications and case studies across all areas of AI in healthcare data

Book Silicon Photonics for High Performance Computing and Beyond

Download or read book Silicon Photonics for High Performance Computing and Beyond written by Mahdi Nikdast and published by CRC Press. This book was released on 2021-11-16 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon photonics is beginning to play an important role in driving innovations in communication and computation for an increasing number of applications, from health care and biomedical sensors to autonomous driving, datacenter networking, and security. In recent years, there has been a significant amount of effort in industry and academia to innovate, design, develop, analyze, optimize, and fabricate systems employing silicon photonics, shaping the future of not only Datacom and telecom technology but also high-performance computing and emerging computing paradigms, such as optical computing and artificial intelligence. Different from existing books in this area, Silicon Photonics for High-Performance Computing and Beyond presents a comprehensive overview of the current state-of-the-art technology and research achievements in applying silicon photonics for communication and computation. It focuses on various design, development, and integration challenges, reviews the latest advances spanning materials, devices, circuits, systems, and applications. Technical topics discussed in the book include: • Requirements and the latest advances in high-performance computing systems • Device- and system-level challenges and latest improvements to deploy silicon photonics in computing systems • Novel design solutions and design automation techniques for silicon photonic integrated circuits • Novel materials, devices, and photonic integrated circuits on silicon • Emerging computing technologies and applications based on silicon photonics Silicon Photonics for High-Performance Computing and Beyond presents a compilation of 19 outstanding contributions from academic and industry pioneers in the field. The selected contributions present insightful discussions and innovative approaches to understand current and future bottlenecks in high-performance computing systems and traditional computing platforms, and the promise of silicon photonics to address those challenges. It is ideal for researchers and engineers working in the photonics, electrical, and computer engineering industries as well as academic researchers and graduate students (M.S. and Ph.D.) in computer science and engineering, electronic and electrical engineering, applied physics, photonics, and optics.

Book Compact and Fast Machine Learning Accelerator for IoT Devices

Download or read book Compact and Fast Machine Learning Accelerator for IoT Devices written by Hantao Huang and published by Springer. This book was released on 2018-12-07 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the latest techniques for machine learning based data analytics on IoT edge devices. A comprehensive literature review on neural network compression and machine learning accelerator is presented from both algorithm level optimization and hardware architecture optimization. Coverage focuses on shallow and deep neural network with real applications on smart buildings. The authors also discuss hardware architecture design with coverage focusing on both CMOS based computing systems and the new emerging Resistive Random-Access Memory (RRAM) based systems. Detailed case studies such as indoor positioning, energy management and intrusion detection are also presented for smart buildings.

Book Cognitive Hyperconnected Digital Transformation

Download or read book Cognitive Hyperconnected Digital Transformation written by Ovidiu Vermesan and published by CRC Press. This book was released on 2022-09-01 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cognitive Hyperconnected Digital Transformation provides an overview of the current Internet of Things (IoT) landscape, ranging from research, innovation and development priorities to enabling technologies in a global context. It is intended as a standalone book in a series that covers the Internet of Things activities of the IERC-Internet of Things European Research Cluster, including both research and technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI) and the IoT European Large-Scale Pilots Programme, presenting global views and state-of-the-art results regarding the challenges facing IoT research, innovation, development and deployment in the next years. Hyperconnected environments integrating industrial/business/consumer IoT technologies and applications require new IoT open systems architectures integrated with network architecture (a knowledge-centric network for IoT), IoT system design and open, horizontal and interoperable platforms managing things that are digital, automated and connected and that function in real-time with remote access and control based on Internet-enabled tools. The IoT is bridging the physical world with the virtual world by combining augmented reality (AR), virtual reality (VR), machine learning and artificial intelligence (AI) to support the physical-digital integrations in the Internet of mobile things based on sensors/actuators, communication, analytics technologies, cyber-physical systems, software, cognitive systems and IoT platforms with multiple functionalities. These IoT systems have the potential to understand, learn, predict, adapt and operate autonomously. They can change future behaviour, while the combination of extensive parallel processing power, advanced algorithms and data sets feed the cognitive algorithms that allow the IoT systems to develop new services and propose new solutions. IoT technologies are moving into the industrial space and enhancing traditional industrial platforms with solutions that break free of device-, operating system- and protocol-dependency. Secure edge computing solutions replace local networks, web services replace software, and devices with networked programmable logic controllers (NPLCs) based on Internet protocols replace devices that use proprietary protocols. Information captured by edge devices on the factory floor is secure and accessible from any location in real time, opening the communication gateway both vertically (connecting machines across the factory and enabling the instant availability of data to stakeholders within operational silos) and horizontally (with one framework for the entire supply chain, across departments, business units, global factory locations and other markets). End-to-end security and privacy solutions in IoT space require agile, context-aware and scalable components with mechanisms that are both fluid and adaptive. The convergence of IT (information technology) and OT (operational technology) makes security and privacy by default a new important element where security is addressed at the architecture level, across applications and domains, using multi-layered distributed security measures. Blockchain is transforming industry operating models by adding trust to untrusted environments, providing distributed security mechanisms and transparent access to the information in the chain. Digital technology platforms are evolving, with IoT platforms integrating complex information systems, customer experience, analytics and intelligence to enable new capabilities and business models for digital business.

Book Normally Off Computing

Download or read book Normally Off Computing written by Takashi Nakada and published by Springer. This book was released on 2017-01-18 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: As a step toward ultimate low-power computing, this book introduces normally-off computing, which involves inactive components of computer systems being aggressively powered off with the help of new non-volatile memories (NVMs). Because the energy consumption of modern information devices strongly depends on both hardware and software, co-design and co-optimization of hardware and software are indispensable to improve energy efficiency. The book discusses various topics including (1) details of low-power technologies including power gating, (2) characteristics of several new-generation NVMs, (3) normally-off computing architecture, (4) important technologies for implementing normally-off computing, (5) three practical implementations: healthcare, mobile information devices, and sensor network systems for smart city applications, and (6) related research and development. Bridging computing methodology and emerging memory devices, the book is designed for both hardware and software designers, engineers, and developers as comprehensive material for understanding normally-off computing.

Book Embedded Deep Learning

Download or read book Embedded Deep Learning written by Bert Moons and published by Springer. This book was released on 2018-10-23 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers algorithmic and hardware implementation techniques to enable embedded deep learning. The authors describe synergetic design approaches on the application-, algorithmic-, computer architecture-, and circuit-level that will help in achieving the goal of reducing the computational cost of deep learning algorithms. The impact of these techniques is displayed in four silicon prototypes for embedded deep learning. Gives a wide overview of a series of effective solutions for energy-efficient neural networks on battery constrained wearable devices; Discusses the optimization of neural networks for embedded deployment on all levels of the design hierarchy – applications, algorithms, hardware architectures, and circuits – supported by real silicon prototypes; Elaborates on how to design efficient Convolutional Neural Network processors, exploiting parallelism and data-reuse, sparse operations, and low-precision computations; Supports the introduced theory and design concepts by four real silicon prototypes. The physical realization’s implementation and achieved performances are discussed elaborately to illustrated and highlight the introduced cross-layer design concepts.

Book Internet of Things  Technology and Applications

Download or read book Internet of Things Technology and Applications written by Luis M. Camarinha-Matos and published by Springer. This book was released on 2023-02-25 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed post-conference proceedings of the Fourth IFIP International Cross-Domain Conference on Internet of Things, IFIPIoT 2021, held virtually in November 2021. The 15 full papers presented were carefully reviewed and selected from 33 submissions. Also included is a summary of two panel sessions held at the conference. The papers are organized in the following topical sections: challenges in IoT Applications and Research, Modernizing Agricultural Practice Using IoT, Cyber-physical IoT systems in Wildfire Context, IoT for Smart Health, Security, Methods.