EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Random Graph Dynamics

    Book Details:
  • Author : Rick Durrett
  • Publisher : Cambridge University Press
  • Release : 2010-05-31
  • ISBN : 1139460889
  • Pages : 203 pages

Download or read book Random Graph Dynamics written by Rick Durrett and published by Cambridge University Press. This book was released on 2010-05-31 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of random graphs began in the late 1950s in several papers by Erdos and Renyi. In the late twentieth century, the notion of six degrees of separation, meaning that any two people on the planet can be connected by a short chain of people who know each other, inspired Strogatz and Watts to define the small world random graph in which each site is connected to k close neighbors, but also has long-range connections. At a similar time, it was observed in human social and sexual networks and on the Internet that the number of neighbors of an individual or computer has a power law distribution. This inspired Barabasi and Albert to define the preferential attachment model, which has these properties. These two papers have led to an explosion of research. The purpose of this book is to use a wide variety of mathematical argument to obtain insights into the properties of these graphs. A unique feature is the interest in the dynamics of process taking place on the graph in addition to their geometric properties, such as connectedness and diameter.

Book Random Dynamical Systems

    Book Details:
  • Author : Ludwig Arnold
  • Publisher : Springer Science & Business Media
  • Release : 2013-04-17
  • ISBN : 3662128780
  • Pages : 590 pages

Download or read book Random Dynamical Systems written by Ludwig Arnold and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first systematic presentation of the theory of dynamical systems under the influence of randomness, this book includes products of random mappings as well as random and stochastic differential equations. The basic multiplicative ergodic theorem is presented, providing a random substitute for linear algebra. On its basis, many applications are detailed. Numerous instructive examples are treated analytically or numerically.

Book Dynamics and Randomness

    Book Details:
  • Author : Alejandro Maass
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 9401003459
  • Pages : 279 pages

Download or read book Dynamics and Randomness written by Alejandro Maass and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the lectures given at the Conference on Dynamics and Randomness held at the Centro de Modelamiento Matematico of the Universidad de Chile from December 11th to 15th, 2000. This meeting brought together mathematicians, theoretical physicists and theoretical computer scientists, and graduate students interested in fields re lated to probability theory, ergodic theory, symbolic and topological dynam ics. We would like to express our gratitude to all the participants of the con ference and to the people who contributed to its organization. In particular, to Pierre Collet, Bernard Host and Mike Keane for their scientific advise. VVe want to thank especially the authors of each chapter for their well prepared manuscripts and the stimulating conferences they gave at Santiago. We are also indebted to our sponsors and supporting institutions, whose interest and help was essential to organize this meeting: ECOS-CONICYT, FONDAP Program in Applied Mathematics, French Cooperation, Fundacion Andes, Presidential Fellowship and Universidad de Chile. We are grateful to Ms. Gladys Cavallone for their excellent work during the preparation of the meeting as well as for the considerable task of unifying the typography of the different chapters of this book.

Book Topological Dynamics of Random Dynamical Systems

Download or read book Topological Dynamics of Random Dynamical Systems written by Nguyen Dinh Cong and published by Oxford University Press. This book was released on 1997 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first systematic treatment of the theory of topological dynamics of random dynamical systems. A relatively new field, the theory of random dynamical systems unites and develops the classical deterministic theory of dynamical systems and probability theory, finding numerous applications in disciplines ranging from physics and biology to engineering, finance and economics. This book presents in detail the solutions to the most fundamental problems of topological dynamics: linearization of nonlinear smooth systems, classification, and structural stability of linear hyperbolic systems. Employing the tools and methods of algebraic ergodic theory, the theory presented in the book has surprisingly beautiful results showing the richness of random dynamical systems as well as giving a gentle generalization of the classical deterministic theory.

Book Dynamics of Gambling  Origins of Randomness in Mechanical Systems

Download or read book Dynamics of Gambling Origins of Randomness in Mechanical Systems written by Jaroslaw Strzalko and published by Springer. This book was released on 2010-01-14 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our everyday life is in?uenced by many unexpected (dif?cult to predict) events usually referred as a chance. Probably, we all are as we are due to the accumulation point of a multitude of chance events. Gambling games that have been known to human beings nearly from the beginning of our civilization are based on chance events. These chance events have created the dream that everybody can easily become rich. This pursuit made gambling so popular. This book is devoted to the dynamics of the mechanical randomizers and we try to solve the problem why mechanical device (roulette) or a rigid body (a coin or a die) operating in the way described by the laws of classical mechanics can behave in such a way and produce a pseudorandom outcome. During mathematical lessons in primary school we are taught that the outcome of the coin tossing experiment is random and that the probability that the tossed coin lands heads (tails) up is equal to 1/2. Approximately, at the same time during physics lessons we are told that the motion of the rigid body (coin is an example of suchabody)isfullydeterministic. Typically,studentsarenotgiventheanswertothe question Why this duality in the interpretation of the simple mechanical experiment is possible? Trying to answer this question we describe the dynamics of the gambling games based on the coin toss, the throw of the die, and the roulette run.

Book P adic Deterministic and Random Dynamics

Download or read book P adic Deterministic and Random Dynamics written by Andrei Y. Khrennikov and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of the theory of p-adic (and more general non-Archimedean) dynamical systems. The main part of the book is devoted to discrete dynamical systems. It presents a model of probabilistic thinking on p-adic mental space based on ultrametric diffusion. Coverage also details p-adic neural networks and their applications to cognitive sciences: learning algorithms, memory recalling.

Book Random Operators

    Book Details:
  • Author : Michael Aizenman
  • Publisher : American Mathematical Soc.
  • Release : 2015-12-11
  • ISBN : 1470419130
  • Pages : 343 pages

Download or read book Random Operators written by Michael Aizenman and published by American Mathematical Soc.. This book was released on 2015-12-11 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the mathematical theory of disorder effects on quantum spectra and dynamics. Topics covered range from the basic theory of spectra and dynamics of self-adjoint operators through Anderson localization--presented here via the fractional moment method, up to recent results on resonant delocalization. The subject's multifaceted presentation is organized into seventeen chapters, each focused on either a specific mathematical topic or on a demonstration of the theory's relevance to physics, e.g., its implications for the quantum Hall effect. The mathematical chapters include general relations of quantum spectra and dynamics, ergodicity and its implications, methods for establishing spectral and dynamical localization regimes, applications and properties of the Green function, its relation to the eigenfunction correlator, fractional moments of Herglotz-Pick functions, the phase diagram for tree graph operators, resonant delocalization, the spectral statistics conjecture, and related results. The text incorporates notes from courses that were presented at the authors' respective institutions and attended by graduate students and postdoctoral researchers.

Book Small Worlds

    Book Details:
  • Author : Duncan J. Watts
  • Publisher : Princeton University Press
  • Release : 2018-06-05
  • ISBN : 0691188335
  • Pages : pages

Download or read book Small Worlds written by Duncan J. Watts and published by Princeton University Press. This book was released on 2018-06-05 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Random Perturbations of Dynamical Systems

Download or read book Random Perturbations of Dynamical Systems written by M. I. Freidlin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Asymptotical problems have always played an important role in probability theory. In classical probability theory dealing mainly with sequences of independent variables, theorems of the type of laws of large numbers, theorems of the type of the central limit theorem, and theorems on large deviations constitute a major part of all investigations. In recent years, when random processes have become the main subject of study, asymptotic investigations have continued to playa major role. We can say that in the theory of random processes such investigations play an even greater role than in classical probability theory, because it is apparently impossible to obtain simple exact formulas in problems connected with large classes of random processes. Asymptotical investigations in the theory of random processes include results of the types of both the laws of large numbers and the central limit theorem and, in the past decade, theorems on large deviations. Of course, all these problems have acquired new aspects and new interpretations in the theory of random processes.

Book A Dynamical Approach to Random Matrix Theory

Download or read book A Dynamical Approach to Random Matrix Theory written by László Erdős and published by American Mathematical Soc.. This book was released on 2017-08-30 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: A co-publication of the AMS and the Courant Institute of Mathematical Sciences at New York University This book is a concise and self-contained introduction of recent techniques to prove local spectral universality for large random matrices. Random matrix theory is a fast expanding research area, and this book mainly focuses on the methods that the authors participated in developing over the past few years. Many other interesting topics are not included, and neither are several new developments within the framework of these methods. The authors have chosen instead to present key concepts that they believe are the core of these methods and should be relevant for future applications. They keep technicalities to a minimum to make the book accessible to graduate students. With this in mind, they include in this book the basic notions and tools for high-dimensional analysis, such as large deviation, entropy, Dirichlet form, and the logarithmic Sobolev inequality. This manuscript has been developed and continuously improved over the last five years. The authors have taught this material in several regular graduate courses at Harvard, Munich, and Vienna, in addition to various summer schools and short courses. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.

Book Dynamics and Randomness II

    Book Details:
  • Author : Alejandro Maass
  • Publisher : Springer Science & Business Media
  • Release : 2004-05-31
  • ISBN : 9781402019906
  • Pages : 244 pages

Download or read book Dynamics and Randomness II written by Alejandro Maass and published by Springer Science & Business Media. This book was released on 2004-05-31 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the lectures given at the Second Conference on Dynamics and Randomness held at the Centro de Modelamiento Matemático of the Universidad de Chile, from December 9-13, 2003. This meeting brought together mathematicians, theoretical physicists, theoretical computer scientists, and graduate students interested in fields related to probability theory, ergodic theory, symbolic and topological dynamics. The courses were on: -Some Aspects of Random Fragmentations in Continuous Times; -Metastability of Ageing in Stochastic Dynamics; -Algebraic Systems of Generating Functions and Return Probabilities for Random Walks; -Recurrent Measures and Measure Rigidity; -Stochastic Particle Approximations for Two-Dimensional Navier Stokes Equations; and -Random and Universal Metric Spaces. The intended audience for this book is Ph.D. students on Probability and Ergodic Theory as well as researchers in these areas. The particular interest of this book is the broad areas of problems that it covers. We have chosen six main topics and asked six experts to give an introductory course on the subject touching the latest advances on each problem.

Book Stable and Random Motions in Dynamical Systems

Download or read book Stable and Random Motions in Dynamical Systems written by Jurgen Moser and published by Princeton University Press. This book was released on 2016-03-02 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: For centuries, astronomers have been interested in the motions of the planets and in methods to calculate their orbits. Since Newton, mathematicians have been fascinated by the related N-body problem. They seek to find solutions to the equations of motion for N masspoints interacting with an inverse-square-law force and to determine whether there are quasi-periodic orbits or not. Attempts to answer such questions have led to the techniques of nonlinear dynamics and chaos theory. In this book, a classic work of modern applied mathematics, Jürgen Moser presents a succinct account of two pillars of the theory: stable and chaotic behavior. He discusses cases in which N-body motions are stable, covering topics such as Hamiltonian systems, the (Moser) twist theorem, and aspects of Kolmogorov-Arnold-Moser theory. He then explores chaotic orbits, exemplified in a restricted three-body problem, and describes the existence and importance of homoclinic points. This book is indispensable for mathematicians, physicists, and astronomers interested in the dynamics of few- and many-body systems and in fundamental ideas and methods for their analysis. After thirty years, Moser's lectures are still one of the best entrées to the fascinating worlds of order and chaos in dynamics.

Book Applied Nonautonomous and Random Dynamical Systems

Download or read book Applied Nonautonomous and Random Dynamical Systems written by Tomás Caraballo and published by Springer. This book was released on 2017-01-31 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introduction to the theory of non-autonomous and stochastic dynamical systems, with a focus on the importance of the theory in the Applied Sciences. It starts by discussing the basic concepts from the theory of autonomous dynamical systems, which are easier to understand and can be used as the motivation for the non-autonomous and stochastic situations. The book subsequently establishes a framework for non-autonomous dynamical systems, and in particular describes the various approaches currently available for analysing the long-term behaviour of non-autonomous problems. Here, the major focus is on the novel theory of pullback attractors, which is still under development. In turn, the third part represents the main body of the book, introducing the theory of random dynamical systems and random attractors and revealing how it may be a suitable candidate for handling realistic models with stochasticity. A discussion of future research directions serves to round out the coverage.

Book Determinism and Randomness in Quantum Dynamics

Download or read book Determinism and Randomness in Quantum Dynamics written by Göran Lindblad and published by . This book was released on 1992 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dynamics of Stochastic Systems

Download or read book Dynamics of Stochastic Systems written by Valery I. Klyatskin and published by Elsevier. This book was released on 2005-03-17 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluctuating parameters appear in a variety of physical systems and phenomena. They typically come either as random forces/sources, or advecting velocities, or media (material) parameters, like refraction index, conductivity, diffusivity, etc. The well known example of Brownian particle suspended in fluid and subjected to random molecular bombardment laid the foundation for modern stochastic calculus and statistical physics. Other important examples include turbulent transport and diffusion of particle-tracers (pollutants), or continuous densities (''oil slicks''), wave propagation and scattering in randomly inhomogeneous media, for instance light or sound propagating in the turbulent atmosphere. Such models naturally render to statistical description, where the input parameters and solutions are expressed by random processes and fields. The fundamental problem of stochastic dynamics is to identify the essential characteristics of system (its state and evolution), and relate those to the input parameters of the system and initial data. This raises a host of challenging mathematical issues. One could rarely solve such systems exactly (or approximately) in a closed analytic form, and their solutions depend in a complicated implicit manner on the initial-boundary data, forcing and system's (media) parameters . In mathematical terms such solution becomes a complicated "nonlinear functional" of random fields and processes. Part I gives mathematical formulation for the basic physical models of transport, diffusion, propagation and develops some analytic tools. Part II sets up and applies the techniques of variational calculus and stochastic analysis, like Fokker-Plank equation to those models, to produce exact or approximate solutions, or in worst case numeric procedures. The exposition is motivated and demonstrated with numerous examples. Part III takes up issues for the coherent phenomena in stochastic dynamical systems, described by ordinary and partial differential equations, like wave propagation in randomly layered media (localization), turbulent advection of passive tracers (clustering). Each chapter is appended with problems the reader to solve by himself (herself), which will be a good training for independent investigations. · This book is translation from Russian and is completed with new principal results of recent research.· The book develops mathematical tools of stochastic analysis, and applies them to a wide range of physical models of particles, fluids, and waves.· Accessible to a broad audience with general background in mathematical physics, but no special expertise in stochastic analysis, wave propagation or turbulence

Book Dynamic Patterns

    Book Details:
  • Author : J. A. Scott Kelso
  • Publisher : MIT Press
  • Release : 1995
  • ISBN : 9780262611312
  • Pages : 368 pages

Download or read book Dynamic Patterns written by J. A. Scott Kelso and published by MIT Press. This book was released on 1995 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: foreword by Hermann Haken For the past twenty years Scott Kelso's research has focused on extending the physical concepts of self- organization and the mathematical tools of nonlinear dynamics to understand how human beings (and human brains) perceive, intend, learn, control, and coordinate complex behaviors. In this book Kelso proposes a new, general framework within which to connect brain, mind, and behavior.Kelso's prescription for mental life breaks dramatically with the classical computational approach that is still the operative framework for many newer psychological and neurophysiological studies. His core thesis is that the creation and evolution of patterned behavior at all levels--from neurons to mind--is governed by the generic processes of self-organization. Both human brain and behavior are shown to exhibit features of pattern-forming dynamical systems, including multistability, abrupt phase transitions, crises, and intermittency. Dynamic Patterns brings together different aspects of this approach to the study of human behavior, using simple experimental examples and illustrations to convey essential concepts, strategies, and methods, with a minimum of mathematics. Kelso begins with a general account of dynamic pattern formation. He then takes up behavior, focusing initially on identifying pattern-forming instabilities in human sensorimotor coordination. Moving back and forth between theory and experiment, he establishes the notion that the same pattern-forming mechanisms apply regardless of the component parts involved (parts of the body, parts of the nervous system, parts of society) and the medium through which the parts are coupled. Finally, employing the latest techniques to observe spatiotemporal patterns of brain activity, Kelso shows that the human brain is fundamentally a pattern forming dynamical system, poised on the brink of instability. Self-organization thus underlies the cooperative action of neurons that produces human behavior in all its forms.

Book Handbook of Dynamics and Probability

Download or read book Handbook of Dynamics and Probability written by Peter Müller and published by Springer Nature. This book was released on 2021-11-20 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our time is characterized by an explosive growth in the use of ever more complicated and sophisticated (computer) models. These models rely on dynamical systems theory for the interpretation of their results and on probability theory for the quantification of their uncertainties. A conscientious and intelligent use of these models requires that both these theories are properly understood. This book is to provide such understanding. It gives a unifying treatment of dynamical systems theory and probability theory. It covers the basic concepts and statements of these theories, their interrelations, and their applications to scientific reasoning and physics. The book stresses the underlying concepts and mathematical structures but is written in a simple and illuminating manner without sacrificing too much mathematical rigor. The book is aimed at students, post-docs, and researchers in the applied sciences who aspire to better understand the conceptual and mathematical underpinnings of the models that they use. Despite the peculiarities of any applied science, dynamics and probability are the common and indispensable tools in any modeling effort. The book is self-contained, with many technical aspects covered in appendices, but does require some basic knowledge in analysis, linear algebra, and physics. Peter Müller, now a professor emeritus at the University of Hawaii, has worked extensively on ocean and climate models and the foundations of complex system theories.