EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Dynamical Systems  PDEs and Networks for Biomedical Applications  Mathematical Modeling  Analysis and Simulations

Download or read book Dynamical Systems PDEs and Networks for Biomedical Applications Mathematical Modeling Analysis and Simulations written by André H. Erhardt and published by Frontiers Media SA. This book was released on 2023-02-15 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mathematical Modeling of Biological Systems  Volume II

Download or read book Mathematical Modeling of Biological Systems Volume II written by Andreas Deutsch and published by Springer Science & Business Media. This book was released on 2007-10-12 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume II of this two-volume, interdisciplinary work is a unified presentation of a broad range of state-of-the-art topics in the rapidly growing field of mathematical modeling in the biological sciences. Highlighted throughout are mathematical and computational apporaches to examine central problems in the life sciences, ranging from the organization principles of individual cells to the dynamics of large populations. The chapters are thematically organized into the following main areas: epidemiology, evolution and ecology, immunology, neural systems and the brain, and innovative mathematical methods and education. The work will be an excellent reference text for a broad audience of researchers, practitioners, and advanced students in this rapidly growing field at the intersection of applied mathematics, experimental biology and medicine, computational biology, biochemistry, computer science, and physics.

Book Mathematical Models and Computer Simulations for Biomedical Applications

Download or read book Mathematical Models and Computer Simulations for Biomedical Applications written by Gabriella Bretti and published by Springer Nature. This book was released on 2023-09-17 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical modelling and computer simulations are playing a crucial role in the solution of the complex problems arising in the field of biomedical sciences and provide a support to clinical and experimental practices in an interdisciplinary framework. Indeed, the development of mathematical models and efficient numerical simulation tools is of key importance when dealing with such applications. Moreover, since the parameters in biomedical models have peculiar scientific interpretations and their values are often unknown, accurate estimation techniques need to be developed for parameter identification against the measured data of observed phenomena. In the light of the new challenges brought by the biomedical applications, computational mathematics paves the way for the validation of the mathematical models and the investigation of control problems. The volume hosts high-quality selected contributions containing original research results as well as comprehensive papers and survey articles including prospective discussion focusing on some topical biomedical problems. It is addressed, but not limited to: research institutes, academia, and pharmaceutical industries.

Book Moving Boundary PDE Analysis

Download or read book Moving Boundary PDE Analysis written by William Schiesser and published by CRC Press. This book was released on 2019-05-29 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical models stated as systems of partial differential equations (PDEs) are broadly used in biology, chemistry, physics and medicine (physiology). These models describe the spatial and temporial variations of the problem system dependent variables, such as temperature, chemical and biochemical concentrations and cell densities, as a function of space and time (spatiotemporal distributions). For a complete PDE model, initial conditions (ICs) specifying how the problem system starts and boundary conditions (BCs) specifying how the system is defined at its spatial boundaries, must also be included for a well-posed PDE model. In this book, PDE models are considered for which the physical boundaries move with time. For example, as a tumor grows, its boundary moves outward. In atherosclerosis, the plaque formation on the arterial wall moves inward, thereby restricting blood flow with serious consequences such as stroke and myocardial infarction (heart attack). These two examples are considered as applications of the reported moving boundary PDE (MBPDE) numerical method (algorithm). The method is programmed in a set of documented routines coded in R, a quality, open-source scientific programming system. The routines are provided as a download so that the reader/analyst/researcher can use MFPDE models without having to first study numerical methods and computer programming.

Book Mathematical Modeling of Biological Systems  Epidemiology  evolution and ecology  immunology  neural systems and the brain  and innovative mathematical methods and education

Download or read book Mathematical Modeling of Biological Systems Epidemiology evolution and ecology immunology neural systems and the brain and innovative mathematical methods and education written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mathematical Modeling in Systems Biology

Download or read book Mathematical Modeling in Systems Biology written by Brian P. Ingalls and published by MIT Press. This book was released on 2022-06-07 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the mathematical concepts and techniques needed for the construction and analysis of models in molecular systems biology. Systems techniques are integral to current research in molecular cell biology, and system-level investigations are often accompanied by mathematical models. These models serve as working hypotheses: they help us to understand and predict the behavior of complex systems. This book offers an introduction to mathematical concepts and techniques needed for the construction and interpretation of models in molecular systems biology. It is accessible to upper-level undergraduate or graduate students in life science or engineering who have some familiarity with calculus, and will be a useful reference for researchers at all levels. The first four chapters cover the basics of mathematical modeling in molecular systems biology. The last four chapters address specific biological domains, treating modeling of metabolic networks, of signal transduction pathways, of gene regulatory networks, and of electrophysiology and neuronal action potentials. Chapters 3–8 end with optional sections that address more specialized modeling topics. Exercises, solvable with pen-and-paper calculations, appear throughout the text to encourage interaction with the mathematical techniques. More involved end-of-chapter problem sets require computational software. Appendixes provide a review of basic concepts of molecular biology, additional mathematical background material, and tutorials for two computational software packages (XPPAUT and MATLAB) that can be used for model simulation and analysis.

Book Mathematical Modeling of Biological Systems  Volume II

Download or read book Mathematical Modeling of Biological Systems Volume II written by Andreas Deutsch and published by Birkhäuser. This book was released on 2007-10-12 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume II of this two-volume, interdisciplinary work is a unified presentation of a broad range of state-of-the-art topics in the rapidly growing field of mathematical modeling in the biological sciences. Highlighted throughout are mathematical and computational apporaches to examine central problems in the life sciences, ranging from the organization principles of individual cells to the dynamics of large populations. The chapters are thematically organized into the following main areas: epidemiology, evolution and ecology, immunology, neural systems and the brain, and innovative mathematical methods and education. The work will be an excellent reference text for a broad audience of researchers, practitioners, and advanced students in this rapidly growing field at the intersection of applied mathematics, experimental biology and medicine, computational biology, biochemistry, computer science, and physics.

Book Time Delay ODE PDE Models

Download or read book Time Delay ODE PDE Models written by W.E. Schiesser and published by CRC Press. This book was released on 2019-11-25 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time delayed (lagged) variables are an inherent feature of biological/physiological systems. For example, infection from a disease may at first be asymptomatic, and only after a delay is the infection apparent so that treatment can begin. Thus, to adequately describe physiological systems, time delays are frequently required and must be included in the equations of mathematical models. The intent of this book is to present a methodology for the formulation and computer implementation of mathematical models based on time delay ordinary differential equations (DODEs) and partial differential equations (DPDEs). The DODE/DPDE methodology is presented through a series of example applications, particularly in biomedical science and engineering (BMSE). The computer-based implementation of the example models is explained with routines coded (programmed) in R, a quality, open-source scientific computing system that is readily available from the Internet. Formal mathematics is minimized, for example, no theorems and proofs. Rather, the presentation is through detailed examples that the reader/researcher/analyst can execute on modest computers. The DPDE analysis is based on the method of lines (MOL), an established general algorithm for PDEs, implemented with finite differences. The example applications can first be executed to confirm the reported solutions, then extended by variation of the parameters and the equation terms, and even the formulation and use of alternative DODE/DPDE models.

Book Introduction to Mathematical Biology

Download or read book Introduction to Mathematical Biology written by Ching Shan Chou and published by Springer. This book was released on 2016-04-27 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on a one semester course that the authors have been teaching for several years, and includes two sets of case studies. The first includes chemostat models, predator-prey interaction, competition among species, the spread of infectious diseases, and oscillations arising from bifurcations. In developing these topics, readers will also be introduced to the basic theory of ordinary differential equations, and how to work with MATLAB without having any prior programming experience. The second set of case studies were adapted from recent and current research papers to the level of the students. Topics have been selected based on public health interest. This includes the risk of atherosclerosis associated with high cholesterol levels, cancer and immune interactions, cancer therapy, and tuberculosis. Readers will experience how mathematical models and their numerical simulations can provide explanations that guide biological and biomedical research. Considered to be the undergraduate companion to the more advanced book "Mathematical Modeling of Biological Processes" (A. Friedman, C.-Y. Kao, Springer – 2014), this book is geared towards undergraduate students with little background in mathematics and no biological background.

Book Mathematical Methods and Models in Biomedicine

Download or read book Mathematical Methods and Models in Biomedicine written by Urszula Ledzewicz and published by Springer Science & Business Media. This book was released on 2012-10-20 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical biomedicine is a rapidly developing interdisciplinary field of research that connects the natural and exact sciences in an attempt to respond to the modeling and simulation challenges raised by biology and medicine. There exist a large number of mathematical methods and procedures that can be brought in to meet these challenges and this book presents a palette of such tools ranging from discrete cellular automata to cell population based models described by ordinary differential equations to nonlinear partial differential equations representing complex time- and space-dependent continuous processes. Both stochastic and deterministic methods are employed to analyze biological phenomena in various temporal and spatial settings. This book illustrates the breadth and depth of research opportunities that exist in the general field of mathematical biomedicine by highlighting some of the fascinating interactions that continue to develop between the mathematical and biomedical sciences. It consists of five parts that can be read independently, but are arranged to give the reader a broader picture of specific research topics and the mathematical tools that are being applied in its modeling and analysis. The main areas covered include immune system modeling, blood vessel dynamics, cancer modeling and treatment, and epidemiology. The chapters address topics that are at the forefront of current biomedical research such as cancer stem cells, immunodominance and viral epitopes, aggressive forms of brain cancer, or gene therapy. The presentations highlight how mathematical modeling can enhance biomedical understanding and will be of interest to both the mathematical and the biomedical communities including researchers already working in the field as well as those who might consider entering it. Much of the material is presented in a way that gives graduate students and young researchers a starting point for their own work.

Book Mathematical Modelling of Dynamic Biological Systems

Download or read book Mathematical Modelling of Dynamic Biological Systems written by Ludwik Finkelstein and published by John Wiley & Sons. This book was released on 1985-05-08 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume introduces readers to the methodology of dynamic systems analysis, using mathematical modelling techniques as an aid to understanding biological phenomena. It creates an ability to appreciate current medical and biological literature, in which mathematical models are being used with increasing frequency, and provides an introduction to the more advanced techniques of systems science. Mathematical concepts are illustrated by reference to frequent biological examples. By the use of case studies drawn from physiology, the various levels of mathematical modelling which can be adopted are presented.

Book Biomedical Modeling and Simulation

Download or read book Biomedical Modeling and Simulation written by Jerome Eisenfeld and published by North Holland. This book was released on 1992-01-01 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of quantitative biology is in the midst of a creative explosion. The increasing sophistication of data analysis is now combining with technical advances in computer hardware and software to allow for a substantially faster output of work than previously. In parallel, the mathematical modeling techniques have grown rapidly in sophistication and predictive value. These techniques include areas of mathematics which have recently become prominent, such as dynamical systems and fractals, as well as older areas, such as partial differential equations and statistics. The recent advances in all these disciplines (biological/medical and mathematical/computer scientific) are best exploited by frequent communication across discipline boundaries.This book brings together work from an interdisciplinary group of quantitatively-oriented scientists to facilitate the exchange of information and ideas on (1) recent methodological advances in mathematics and computer science that have the potential for contributing to the solution of a variety of biomedical problems, (2) current applications in selected areas of biomedical research, and (3) identification of those areas in which the needs for mathematical/computer scientific treatment will be greatest in the coming years.This collection of articles should convey to the biomedical community a sense of the areas in which mathematics and computer science approaches can be usefully applied, and it is hoped that this series will expose the mathematical community to some of the most important quantitative questions in the fields of biology and medicine.

Book Reduced Order Methods for Modeling and Computational Reduction

Download or read book Reduced Order Methods for Modeling and Computational Reduction written by Alfio Quarteroni and published by Springer. This book was released on 2014-06-05 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph addresses the state of the art of reduced order methods for modeling and computational reduction of complex parametrized systems, governed by ordinary and/or partial differential equations, with a special emphasis on real time computing techniques and applications in computational mechanics, bioengineering and computer graphics. Several topics are covered, including: design, optimization, and control theory in real-time with applications in engineering; data assimilation, geometry registration, and parameter estimation with special attention to real-time computing in biomedical engineering and computational physics; real-time visualization of physics-based simulations in computer science; the treatment of high-dimensional problems in state space, physical space, or parameter space; the interactions between different model reduction and dimensionality reduction approaches; the development of general error estimation frameworks which take into account both model and discretization effects. This book is primarily addressed to computational scientists interested in computational reduction techniques for large scale differential problems.

Book Dynamical Systems for Biological Modeling

Download or read book Dynamical Systems for Biological Modeling written by Fred Brauer and published by CRC Press. This book was released on 2015-12-23 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamical Systems for Biological Modeling: An Introduction prepares both biology and mathematics students with the understanding and techniques necessary to undertake basic modeling of biological systems. It achieves this through the development and analysis of dynamical systems.The approach emphasizes qualitative ideas rather than explicit computa

Book Method of Lines PDE Analysis in Biomedical Science and Engineering

Download or read book Method of Lines PDE Analysis in Biomedical Science and Engineering written by William E. Schiesser and published by John Wiley & Sons. This book was released on 2016-03-31 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the methodology and applications of ODE and PDE models within biomedical science and engineering With an emphasis on the method of lines (MOL) for partial differential equation (PDE) numerical integration, Method of Lines PDE Analysis in Biomedical Science and Engineering demonstrates the use of numerical methods for the computer solution of PDEs as applied to biomedical science and engineering (BMSE). Written by a well-known researcher in the field, the book provides an introduction to basic numerical methods for initial/boundary value PDEs before moving on to specific BMSE applications of PDEs. Featuring a straightforward approach, the book’s chapters follow a consistent and comprehensive format. First, each chapter begins by presenting the model as an ordinary differential equation (ODE)/PDE system, including the initial and boundary conditions. Next, the programming of the model equations is introduced through a series of R routines that primarily implement MOL for PDEs. Subsequently, the resulting numerical and graphical solution is discussed and interpreted with respect to the model equations. Finally, each chapter concludes with a review of the numerical algorithm performance, general observations and results, and possible extensions of the model. Method of Lines PDE Analysis in Biomedical Science and Engineering also includes: Examples of MOL analysis of PDEs, including BMSE applications in wave front resolution in chromatography, VEGF angiogenesis, thermographic tumor location, blood-tissue transport, two fluid and membrane mass transfer, artificial liver support system, cross diffusion epidemiology, oncolytic virotherapy, tumor cell density in glioblastomas, and variable grids Discussions on the use of R software, which facilitates immediate solutions to differential equation problems without having to first learn the basic concepts of numerical analysis for PDEs and the programming of PDE algorithms A companion website that provides source code for the R routines Method of Lines PDE Analysis in Biomedical Science and Engineering is an introductory reference for researchers, scientists, clinicians, medical researchers, mathematicians, statisticians, chemical engineers, epidemiologists, and pharmacokineticists as well as anyone interested in clinical applications and the interpretation of experimental data with differential equation models. The book is also an ideal textbook for graduate-level courses in applied mathematics, BMSE, biology, biophysics, biochemistry, medicine, and engineering.

Book Stochastic Processes  Multiscale Modeling  and Numerical Methods for Computational Cellular Biology

Download or read book Stochastic Processes Multiscale Modeling and Numerical Methods for Computational Cellular Biology written by David Holcman and published by Springer. This book was released on 2017-10-04 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the modeling and mathematical analysis of stochastic dynamical systems along with their simulations. The collected chapters will review fundamental and current topics and approaches to dynamical systems in cellular biology. This text aims to develop improved mathematical and computational methods with which to study biological processes. At the scale of a single cell, stochasticity becomes important due to low copy numbers of biological molecules, such as mRNA and proteins that take part in biochemical reactions driving cellular processes. When trying to describe such biological processes, the traditional deterministic models are often inadequate, precisely because of these low copy numbers. This book presents stochastic models, which are necessary to account for small particle numbers and extrinsic noise sources. The complexity of these models depend upon whether the biochemical reactions are diffusion-limited or reaction-limited. In the former case, one needs to adopt the framework of stochastic reaction-diffusion models, while in the latter, one can describe the processes by adopting the framework of Markov jump processes and stochastic differential equations. Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology will appeal to graduate students and researchers in the fields of applied mathematics, biophysics, and cellular biology.

Book Dynamical Models of Biology and Medicine

Download or read book Dynamical Models of Biology and Medicine written by Yang Kuang and published by MDPI. This book was released on 2019-10-04 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical and computational modeling approaches in biological and medical research are experiencing rapid growth globally. This Special Issue Book intends to scratch the surface of this exciting phenomenon. The subject areas covered involve general mathematical methods and their applications in biology and medicine, with an emphasis on work related to mathematical and computational modeling of the complex dynamics observed in biological and medical research. Fourteen rigorously reviewed papers were included in this Special Issue. These papers cover several timely topics relating to classical population biology, fundamental biology, and modern medicine. While the authors of these papers dealt with very different modeling questions, they were all motivated by specific applications in biology and medicine and employed innovative mathematical and computational methods to study the complex dynamics of their models. We hope that these papers detail case studies that will inspire many additional mathematical modeling efforts in biology and medicine