Download or read book Driving Data Quality with Data Contracts written by Andrew Jones and published by Packt Publishing Ltd. This book was released on 2023-06-30 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: Everything you need to know to apply data contracts and build a truly data-driven organization that harnesses quality data to deliver tangible business value Purchase of the print or Kindle book includes a free PDF eBook Key Features Understand data contracts and their power to resolving the problems in contemporary data platforms Learn how to design and implement a cutting-edge data platform powered by data contracts Access practical guidance from the pioneer of data contracts to get expert insights on effective utilization Book DescriptionDespite the passage of time and the evolution of technology and architecture, the challenges we face in building data platforms persist. Our data often remains unreliable, lacks trust, and fails to deliver the promised value. With Driving Data Quality with Data Contracts, you’ll discover the potential of data contracts to transform how you build your data platforms, finally overcoming these enduring problems. You’ll learn how establishing contracts as the interface allows you to explicitly assign responsibility and accountability of the data to those who know it best—the data generators—and give them the autonomy to generate and manage data as required. The book will show you how data contracts ensure that consumers get quality data with clearly defined expectations, enabling them to build on that data with confidence to deliver valuable analytics, performant ML models, and trusted data-driven products. By the end of this book, you’ll have gained a comprehensive understanding of how data contracts can revolutionize your organization’s data culture and provide a competitive advantage by unlocking the real value within your data.What you will learn Gain insights into the intricacies and shortcomings of today's data architectures Understand exactly how data contracts can solve prevalent data challenges Drive a fundamental transformation of your data culture by implementing data contracts Discover what goes into a data contract and why it's important Design a modern data architecture that leverages the power of data contracts Explore sample implementations to get practical knowledge of using data contracts Embrace best practices for the successful deployment of data contracts Who this book is for If you’re a data engineer, data leader, architect, or practitioner thinking about your data architecture and looking to design one that enables your organization to get the most value from your data, this book is for you. Additionally, staff engineers, product managers, and software engineering leaders and executives will also find valuable insights.
Download or read book Data Quality in the Age of AI written by Andrew Jones and published by Packt Publishing Ltd. This book was released on 2024-08-01 with total page 50 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlock the power of data with expert insights to enhance data quality, maximizing the potential of AI, and establishing a data-centric culture Key Features Gain a profound understanding of the interplay between data quality and AI Explore strategies to improve data quality with practical implementation and real-world results Acquire the skills to measure and evaluate data quality, empowering data-driven decisions Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionAs organizations worldwide seek to revamp their data strategies to leverage AI advancements and benefit from newfound capabilities, data quality emerges as the cornerstone for success. Without high-quality data, even the most advanced AI models falter. Enter Data Quality in the Age of AI, a detailed report that illuminates the crucial role of data quality in shaping effective data strategies. Packed with actionable insights, this report highlights the critical role of data quality in your overall data strategy. It equips teams and organizations with the knowledge and tools to thrive in the evolving AI landscape, serving as a roadmap for harnessing the power of data quality, enabling them to unlock their data's full potential, leading to improved performance, reduced costs, increased revenue, and informed strategic decisions.What you will learn Discover actionable steps to establish data quality as the foundation of your data culture Enhance data quality directly at its source with effective strategies and best practices Elevate data quality standards and enhance data literacy within your organization Identify and measure data quality within the dataset Adopt a product mindset to address data quality challenges Explore emerging architectural patterns like data mesh and data contracts Assign roles, responsibilities, and incentives for data generators Gain insights from real-world case studies Who this book is for This report is for data leaders and decision-makers, including CTOs, CIOs, CISOs, CPOs, and CEOs responsible for shaping their organization's data strategy to maximize data value, especially those interested in harnessing recent AI advancements.
Download or read book Financial Data Engineering written by Tamer Khraisha and published by "O'Reilly Media, Inc.". This book was released on 2024-10-09 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today, investment in financial technology and digital transformation is reshaping the financial landscape and generating many opportunities. Too often, however, engineers and professionals in financial institutions lack a practical and comprehensive understanding of the concepts, problems, techniques, and technologies necessary to build a modern, reliable, and scalable financial data infrastructure. This is where financial data engineering is needed. A data engineer developing a data infrastructure for a financial product possesses not only technical data engineering skills but also a solid understanding of financial domain-specific challenges, methodologies, data ecosystems, providers, formats, technological constraints, identifiers, entities, standards, regulatory requirements, and governance. This book offers a comprehensive, practical, domain-driven approach to financial data engineering, featuring real-world use cases, industry practices, and hands-on projects. You'll learn: The data engineering landscape in the financial sector Specific problems encountered in financial data engineering The structure, players, and particularities of the financial data domain Approaches to designing financial data identification and entity systems Financial data governance frameworks, concepts, and best practices The financial data engineering lifecycle from ingestion to production The varieties and main characteristics of financial data workflows How to build financial data pipelines using open source tools and APIs Tamer Khraisha, PhD, is a senior data engineer and scientific author with more than a decade of experience in the financial sector.
Download or read book Managing Data Integrity for Finance written by Jane Sarah Lat and published by Packt Publishing Ltd. This book was released on 2024-01-31 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Level up your career by learning best practices for managing the data quality and integrity of your financial data Key Features Accelerate data integrity management using artificial intelligence-powered solutions Learn how business intelligence tools, ledger databases, and database locks solve data integrity issues Find out how to detect fraudulent transactions affecting financial report integrity Book DescriptionData integrity management plays a critical role in the success and effectiveness of organizations trying to use financial and operational data to make business decisions. Unfortunately, there is a big gap between the analysis and management of finance data along with the proper implementation of complex data systems across various organizations. The first part of this book covers the important concepts for data quality and data integrity relevant to finance, data, and tech professionals. The second part then focuses on having you use several data tools and platforms to manage and resolve data integrity issues on financial data. The last part of this the book covers intermediate and advanced solutions, including managed cloud-based ledger databases, database locks, and artificial intelligence, to manage the integrity of financial data in systems and databases. After finishing this hands-on book, you will be able to solve various data integrity issues experienced by organizations globally.What you will learn Develop a customized financial data quality scorecard Utilize business intelligence tools to detect, manage, and resolve data integrity issues Find out how to use managed cloud-based ledger databases for financial data integrity Apply database locking techniques to prevent transaction integrity issues involving finance data Discover the methods to detect fraudulent transactions affecting financial report integrity Use artificial intelligence-powered solutions to resolve various data integrity issues and challenges Who this book is for This book is for financial analysts, technical leaders, and data professionals interested in learning practical strategies for managing data integrity and data quality using relevant frameworks and tools. A basic understanding of finance concepts, accounting, and data analysis is expected. Knowledge of finance management is not a prerequisite, but it’ll help you grasp the more advanced topics covered in this book.
Download or read book Data Engineering Best Practices written by Richard J. Schiller and published by Packt Publishing Ltd. This book was released on 2024-10-11 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore modern data engineering techniques and best practices to build scalable, efficient, and future-proof data processing systems across cloud platforms Key Features Architect and engineer optimized data solutions in the cloud with best practices for performance and cost-effectiveness Explore design patterns and use cases to balance roles, technology choices, and processes for a future-proof design Learn from experts to avoid common pitfalls in data engineering projects Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionRevolutionize your approach to data processing in the fast-paced business landscape with this essential guide to data engineering. Discover the power of scalable, efficient, and secure data solutions through expert guidance on data engineering principles and techniques. Written by two industry experts with over 60 years of combined experience, it offers deep insights into best practices, architecture, agile processes, and cloud-based pipelines. You’ll start by defining the challenges data engineers face and understand how this agile and future-proof comprehensive data solution architecture addresses them. As you explore the extensive toolkit, mastering the capabilities of various instruments, you’ll gain the knowledge needed for independent research. Covering everything you need, right from data engineering fundamentals, the guide uses real-world examples to illustrate potential solutions. It elevates your skills to architect scalable data systems, implement agile development processes, and design cloud-based data pipelines. The book further equips you with the knowledge to harness serverless computing and microservices to build resilient data applications. By the end, you'll be armed with the expertise to design and deliver high-performance data engineering solutions that are not only robust, efficient, and secure but also future-ready.What you will learn Architect scalable data solutions within a well-architected framework Implement agile software development processes tailored to your organization's needs Design cloud-based data pipelines for analytics, machine learning, and AI-ready data products Optimize data engineering capabilities to ensure performance and long-term business value Apply best practices for data security, privacy, and compliance Harness serverless computing and microservices to build resilient, scalable, and trustworthy data pipelines Who this book is for If you are a data engineer, ETL developer, or big data engineer who wants to master the principles and techniques of data engineering, this book is for you. A basic understanding of data engineering concepts, ETL processes, and big data technologies is expected. This book is also for professionals who want to explore advanced data engineering practices, including scalable data solutions, agile software development, and cloud-based data processing pipelines.
Download or read book The Definitive Guide to Data Integration written by Pierre-Yves BONNEFOY and published by Packt Publishing Ltd. This book was released on 2024-03-29 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the essentials of data integration with this comprehensive guide, covering everything from sources to solutions, and discover the key to making the most of your data stack Key Features Learn how to leverage modern data stack tools and technologies for effective data integration Design and implement data integration solutions with practical advice and best practices Focus on modern technologies such as cloud-based architectures, real-time data processing, and open-source tools and technologies Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe Definitive Guide to Data Integration is an indispensable resource for navigating the complexities of modern data integration. Focusing on the latest tools, techniques, and best practices, this guide helps you master data integration and unleash the full potential of your data. This comprehensive guide begins by examining the challenges and key concepts of data integration, such as managing huge volumes of data and dealing with the different data types. You’ll gain a deep understanding of the modern data stack and its architecture, as well as the pivotal role of open-source technologies in shaping the data landscape. Delving into the layers of the modern data stack, you’ll cover data sources, types, storage, integration techniques, transformation, and processing. The book also offers insights into data exposition and APIs, ingestion and storage strategies, data preparation and analysis, workflow management, monitoring, data quality, and governance. Packed with practical use cases, real-world examples, and a glimpse into the future of data integration, The Definitive Guide to Data Integration is an essential resource for data eclectics. By the end of this book, you’ll have the gained the knowledge and skills needed to optimize your data usage and excel in the ever-evolving world of data.What you will learn Discover the evolving architecture and technologies shaping data integration Process large data volumes efficiently with data warehousing Tackle the complexities of integrating large datasets from diverse sources Harness the power of data warehousing for efficient data storage and processing Design and optimize effective data integration solutions Explore data governance principles and compliance requirements Who this book is for This book is perfect for data engineers, data architects, data analysts, and IT professionals looking to gain a comprehensive understanding of data integration in the modern era. Whether you’re a beginner or an experienced professional enhancing your knowledge of the modern data stack, this definitive guide will help you navigate the data integration landscape.
Download or read book Implementing Data Mesh written by Jean-Georges Perrin and published by "O'Reilly Media, Inc.". This book was released on 2024-10-15 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: As data continues to grow and become more complex, organizations seek innovative solutions to manage their data effectively. Data Mesh is one solution that provides a new approach to managing data in complex organizations. This practical guide offers step-by-step guidance on how to implement data mesh in your organization. In this book, Jean-Georges Perrin and Eric Broda focus on the key components of data mesh and provide practical advice supported by code. You'll explore a simple and intuitive process for identifying key data mesh components and data products, and learn about a consistent set of interfaces and access methods that make data products easy to consume. This approach ensures that your data products are easily accessible and the data mesh ecosystem is easy to navigate. With this book, you'll learn how to: Identify, define, and build data products that interoperate within an enterprise data mesh Build a data mesh fabric that binds data products together Build and deploy data products in a data mesh Establish the organizational structure to operate data products, data platforms, and data fabric Learn an innovative architecture that brings data products and data fabric together into the data mesh About the authors: Jean-Georges "JG" Perrin is a technology leader focusing on building innovative and modern data platforms. Eric Broda is a technology executive, practitioner, and founder of a boutique consulting firm that helps global enterprises realize value from data.
Download or read book Data Products and the Data Mesh written by Alberto Artasanchez and published by The Data Science Ninja. This book was released on with total page 643 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Data Products and the Data Mesh" is a comprehensive guide that explores the emerging paradigm of the data mesh and its implications for organizations navigating the data-driven landscape. This book equips readers with the knowledge and insights needed to design, build, and manage effective data products within the data mesh framework. The book starts by introducing the core concepts and principles of the data mesh, highlighting the shift from centralized data architectures to decentralized, domain-oriented approaches. It delves into the key components of the data mesh, including federated data governance, data marketplaces, data virtualization, and adaptive data products. Each chapter provides in-depth analysis, practical strategies, and real-world examples to illustrate the application of these concepts. Readers will gain a deep understanding of how the data mesh fosters a culture of data ownership, collaboration, and innovation. They will explore the role of modern data architectures, such as data marketplaces, in facilitating decentralized data sharing, access, and monetization. The book also delves into the significance of emerging technologies like blockchain, AI, and machine learning in enhancing data integrity, security, and value creation. Throughout the book, readers will discover practical insights and best practices to overcome challenges related to data governance, scalability, privacy, and compliance. They will learn how to optimize data workflows, leverage domain-driven design principles, and harness the power of data virtualization to drive meaningful insights and create impactful data products. "Data Products and the Data Mesh" is an essential resource for data professionals, architects, and leaders seeking to navigate the complex world of data products within the data mesh paradigm. It provides a comprehensive roadmap for building a scalable, decentralized, and innovative data ecosystem that empowers organizations to unlock the full potential of their data assets and drive data-driven success.
Download or read book Blockchain Big Data and Machine Learning written by Neeraj Kumar and published by CRC Press. This book was released on 2020-09-24 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: Present book covers new paradigms in Blockchain, Big Data and Machine Learning concepts including applications and case studies. It explains dead fusion in realizing the privacy and security of blockchain based data analytic environment. Recent research of security based on big data, blockchain and machine learning has been explained through actual work by practitioners and researchers, including their technical evaluation and comparison with existing technologies. The theoretical background and experimental case studies related to real-time environment are covered as well. Aimed at Senior undergraduate students, researchers and professionals in computer science and engineering and electrical engineering, this book: Converges Blockchain, Big Data and Machine learning in one volume. Connects Blockchain technologies with the data centric applications such Big data and E-Health. Easy to understand examples on how to create your own blockchain supported by case studies of blockchain in different industries. Covers big data analytics examples using R. Includes lllustrative examples in python for blockchain creation.
Download or read book Data Management at Scale written by Piethein Strengholt and published by O'Reilly Media. This book was released on 2020-07-29 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: As data management and integration continue to evolve rapidly, storing all your data in one place, such as a data warehouse, is no longer scalable. In the very near future, data will need to be distributed and available for several technological solutions. With this practical book, you’ll learnhow to migrate your enterprise from a complex and tightly coupled data landscape to a more flexible architecture ready for the modern world of data consumption. Executives, data architects, analytics teams, and compliance and governance staff will learn how to build a modern scalable data landscape using the Scaled Architecture, which you can introduce incrementally without a large upfront investment. Author Piethein Strengholt provides blueprints, principles, observations, best practices, and patterns to get you up to speed. Examine data management trends, including technological developments, regulatory requirements, and privacy concerns Go deep into the Scaled Architecture and learn how the pieces fit together Explore data governance and data security, master data management, self-service data marketplaces, and the importance of metadata
Download or read book Theory and Practice of Business Intelligence in Healthcare written by Khuntia, Jiban and published by IGI Global. This book was released on 2019-12-27 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Business intelligence supports managers in enterprises to make informed business decisions in various levels and domains such as in healthcare. These technologies can handle large structured and unstructured data (big data) in the healthcare industry. Because of the complex nature of healthcare data and the significant impact of healthcare data analysis, it is important to understand both the theories and practices of business intelligence in healthcare. Theory and Practice of Business Intelligence in Healthcare is a collection of innovative research that introduces data mining, modeling, and analytic techniques to health and healthcare data; articulates the value of big volumes of data to health and healthcare; evaluates business intelligence tools; and explores business intelligence use and applications in healthcare. While highlighting topics including digital health, operations intelligence, and patient empowerment, this book is ideally designed for healthcare professionals, IT consultants, hospital directors, data management staff, data analysts, hospital administrators, executives, managers, academicians, students, and researchers seeking current research on the digitization of health records and health systems integration.
Download or read book The Best Thinking in Business Analytics from the Decision Sciences Institute written by Merrill Warkentin and published by FT Press. This book was released on 2015-08-18 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today, business success depends on making great decisions – and making them fast. Leading organizations apply sophisticated business analytics tools and technologies to evaluate vast amounts of data, glean new insights, and increase both the speed and quality of decision making. In The Best Thinking and Practices in Business Analytics from the Decision Sciences Institute, DSI has compiled award-winning and award-nominated contributions from its most recent conferences: papers that illuminate exceptionally high-value applications and research on analytics for decision-making. These papers have appeared in no other DSI collection. Explore them here, and you’ll discover powerful new opportunities for competitive advantage through analytics. For all business, academic, and organizational professionals concerned with the science of more effective decision-making; and for undergraduate students, graduate students, and certification candidates in all related fields.
Download or read book Value Driven Data written by Edosa Odaro and published by Kogan Page Publishers. This book was released on 2023-08-03 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Value-Driven Data explains how data and business leaders can co-create and deploy data-driven solutions for their organizations. Value-Driven Data explores how organizations can understand their problems and come up with better solutions, aligning data storytelling with business needs. The book reviews the main challenges that plague most data-to-business interactions and offers actionable strategies for effective data value implementation, including methods for tackling obstacles and incentivizing change. Value-Driven Data is supported by tried-and-tested frameworks that can be applied to different contexts and organizations. It features cutting-edge examples relating to digital transformation, data strategy, resolving conflicts of interests, building a data P&L and AI value prediction methodology. Recognizing different types of data value, this book presents tangible methodologies for identifying, capturing, communicating, measuring and deploying data-enabled opportunities. This is essential reading for data specialists, business stakeholders and leaders involved in capturing and executing data value opportunities for organizations and for informing data value strategies.
Download or read book Data Profiling and Insurance Law written by Brendan McGurk KC and published by Bloomsbury Publishing. This book was released on 2019-03-21 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: The winner of the 2020 British Insurance Law Association Book Prize, this timely, expertly written book looks at the legal impact that the use of 'Big Data' will have on the provision – and substantive law – of insurance. Insurance companies are set to become some of the biggest consumers of big data which will enable them to profile prospective individual insureds at an increasingly granular level. More particularly, the book explores how: (i) insurers gain access to information relevant to assessing risk and/or the pricing of premiums; (ii) the impact which that increased information will have on substantive insurance law (and in particular duties of good faith disclosure and fair presentation of risk); and (iii) the impact that insurers' new knowledge may have on individual and group access to insurance. This raises several consequential legal questions: (i) To what extent is the use of big data analytics to profile risk compatible (at least in the EU) with the General Data Protection Regulation? (ii) Does insurers' ability to parse vast quantities of individual data about insureds invert the information asymmetry that has historically existed between insured and insurer such as to breathe life into insurers' duty of good faith disclosure? And (iii) by what means might legal challenges be brought against insurers both in relation to the use of big data and the consequences it may have on access to cover? Written by a leading expert in the field, this book will both stimulate further debate and operate as a reference text for academics and practitioners who are faced with emerging legal problems arising from the increasing opportunities that big data offers to the insurance industry.
Download or read book Public Procurement Regulation in a Crisis written by Sue Arrowsmith and published by Bloomsbury Publishing. This book was released on 2021-11-04 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: This timely book provides the first systematic analysis of global public procurement regulation and policy during and beyond the COVID-19 pandemic. Through both thematic chapters and national case studies, this book: - explores the adequacy of traditional legal frameworks for emergency procurement; - examines how governments and international organisations have responded specifically to the pandemic; and - considers how the experience of the pandemic and the political impetus for reform might be leveraged to improve public procurement more broadly. Public procurement has been critical in delivering vital frontline public services both in the health sector and elsewhere, with procurement of ventilators, protective equipment and new hospitals all hitting the headlines. At the same time, procurers have faced the challenge of adjusting existing contracts to a new reality where, for example, some contracted services can no longer operate. Further, efficient and effective procurement will be an essential, and not a luxury, in the economic recovery. With case studies on Italy, the UK, the USA, India, Singapore, Africa, Latin America and China, the book brings together the world's leading academics and practitioners from across Europe, the Americas, Asia and Africa to examine these issues, providing an essential resource for policy makers, legislators, international organisations and academics.
Download or read book Mortgage Banking written by and published by . This book was released on 2008 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Ubiquitous and Pervasive Commerce written by George Roussos and published by Springer Science & Business Media. This book was released on 2006-02-20 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the core of this book is the interplay between technological and business innovation and social practice. Although the bene?ts of 50 years of rapid advances in digital telecommunications and computing technology have not bene?ted everyone equally, they have nevertheless transformed almost every aspectofthewaywelive.Oneareawheretechnologyhashada clearimpactis in the way we conduct business. The rate of change that brings about mod- nity has been considerably strengthened by technological advances applied to product manufacturing, distribution, ?nancing, and management, which arguably form the substrate for globalization and consumerism. It is thus no surprise that businesses closely monitor advances in techn- ogy and invest considerable resources in exploring possible new applications and market opportunities. Yet, consumers’ acceptance of new ways of buying and selling depends as much on business and technology as on our society’s culture and the culture of the material environment that de?nes our values, sensibilities, and thus our commitments. Moreover, the rate of technological innovation is such that to the c- sumer, technology implementation is fully opaque.Nonetheless, opportunities to carry out commerce in novel ways also introduce risk to established - cial structures, conventions, and institutions. In modernity, risk management is one of the core functions of society and to be successful in this, societies depend on their trust of experts. Experts take risks on behalf of society and are responsible for evaluating the full extent of a particular set of hazards including those associated with a particular technology.