EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Drilling Geomechanics in Naturally Fractured Reservoirs Near Salt Structures

Download or read book Drilling Geomechanics in Naturally Fractured Reservoirs Near Salt Structures written by Juan Pedro Morales Salazar and published by Springer Nature. This book was released on with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Applied Concepts in Fractured Reservoirs

Download or read book Applied Concepts in Fractured Reservoirs written by John C. Lorenz and published by John Wiley & Sons. This book was released on 2020-01-13 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: A much-needed, precise and practical treatment of a key topic in the energy industry and beyond, Applied Concepts in Fractured Reservoirs is an invaluable reference for those in both industry and academia Authored by renowned experts in the field, this book covers the understanding, evaluation, and effects of fractures in reservoirs. It offers a comprehensive yet practical discussion and description of natural fractures, their origins, characteristics, and effects on hydrocarbon reservoirs. It starts by introducing the reader to basic definitions and classifications of fractures and fractured reservoirs. It then provides an outline for fractured-reservoir characterization and analysis, and goes on to introduce the way fractures impact operational activities. Well organized and clearly illustrated throughout, Applied Concepts in Fractured Reservoirs starts with a section on understanding natural fractures. It looks at the different types, their dimensions, and the mechanics of fracturing rock in extension and shear. The next section provides information on measuring and analyzing fractures in reservoirs. It covers: logging core for fractures; taking, measuring, and analyzing fracture data; new core vs. archived core; CT scans; comparing fracture data from outcrops, core, and logs; and more. The last part examines the effects of natural fractures on reservoirs, including: the permeability behavior of individual fractures and fracture systems; fracture volumetrics; effects of fractures on drilling and coring; and the interaction between natural and hydraulic fractures. Teaches readers to understand and evaluate fractures Compiles and synthesizes various concepts and descriptions scattered in literature and synthesizes them with unpublished oil-field observations and data, along with the authors’ own experience Bridges some of the gaps between reservoir engineers and geologists Provides an invaluable reference for geologists and engineers who need to understand naturally fractured reservoirs in order to efficiently extract hydrocarbons Illustrated in full color throughout Companion volume to the Atlas of Natural and Induced Fractures in Core

Book Advances in the Study of Fractured Reservoirs

Download or read book Advances in the Study of Fractured Reservoirs written by G.H. Spence and published by Geological Society of London. This book was released on 2014-08-27 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Naturally fractured reservoirs constitute a substantial percentage of remaining hydrocarbon resources; they create exploration targets in otherwise impermeable rocks, including under-explored crystalline basement; and they can be used as geological stores for anthropogenic carbon dioxide. Their complex behaviour during production has traditionally proved difficult to predict, causing a large degree of uncertainty in reservoir development. The applied study of naturally fractured reservoirs seeks to constrain this uncertainty by developing new understanding, and is necessarily a broad, integrated, interdisciplinary topic. This book addresses some of the challenges and advances in knowledge, approaches, concepts, and methods used to characterize the interplay of rock matrix and fracture networks, relevant to fluid flow and hydrocarbon recovery. Topics include: describing, characterizing and identifying controls on fracture networks from outcrops, cores, geophysical data, digital and numerical models; geomechanical influences on reservoir behaviour; numerical modelling and simulation of fluid flow; and case studies of the exploration and development of carbonate, siliciclastic and metamorphic naturally fractured reservoirs.

Book Geomechanics  Fluid Dynamics and Well Testing  Applied to Naturally Fractured Carbonate Reservoirs

Download or read book Geomechanics Fluid Dynamics and Well Testing Applied to Naturally Fractured Carbonate Reservoirs written by Nelson Enrique Barros Galvis and published by Springer. This book was released on 2019-01-05 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents an important step towards a deeper understanding of naturally fractured carbonate reservoirs (NFCRs). It demonstrates the various kinds of discontinuities using geological evidence, mathematical kinematics model and computed tomography and uses this as a basis for proposing a new classification for NFCRs. Additionally, this study takes advantage of rock mechanics theory to illustrate how natural fractures can collapse due to fluid flow and pressure changes in the fractured media. The explanations and mathematical modeling developed in this dissertation can be used as diagnostic tools to predict fluid velocity, fluid flow, tectonic fracture collapse, pressure behavior during reservoir depleting, considering stress-sensitive and non-stress-sensitive, with nonlinear terms in the diffusivity equation applied to NFCRs. Furthermore, the book presents the description of real reservoirs with their field data as the principal goal in the mathematical description of the realistic phenomenology of NFCRs.

Book Geologic Analysis of Naturally Fractured Reservoirs

Download or read book Geologic Analysis of Naturally Fractured Reservoirs written by Ronald Nelson and published by Elsevier. This book was released on 2001-08-24 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geologists, engineers, and petrophysicists concerned with hydrocarbon production from naturally fractured reservoirs will find this book a valuable tool for obtaining pertinent rock data to evaluate reserves and optimize well location and performance. Nelson emphasizes geological, petrophysical, and rock mechanics to complement other studies of the subject that use well logging and classical engineering approaches. This well organized, updated edition contains a wealth of field and laboratory data, case histories, and practical advice. A great how-to-guide for anyone working with fractured or highly anisotropic reservoirs Provides real-life illustrations through case histories and field and laboratory data

Book Geological Aspects of Horizontal Drilling

Download or read book Geological Aspects of Horizontal Drilling written by Richard D. Fritz and published by . This book was released on 1991 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Naturally Fractured Reservoirs

Download or read book Naturally Fractured Reservoirs written by Roberto Aguilera and published by PennWell Books. This book was released on 1980 with total page 730 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals exclusively with naturally fractured reservoirs and includes many subjects usually treated in separate volumes. A highly practical edition, Naturally Fractured Reservoirs is written for students, reservoir geologists, log analysts and petroleum engineers.

Book Projects Investigating Oil Recovery from Naturally Fractured Reservoirs

Download or read book Projects Investigating Oil Recovery from Naturally Fractured Reservoirs written by United States. National Petroleum Technology Office and published by . This book was released on 1999 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Future of Geological Modelling in Hydrocarbon Development

Download or read book The Future of Geological Modelling in Hydrocarbon Development written by Adam Robinson and published by Geological Society of London. This book was released on 2008 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 3D geological model is still regarded as one of the newest and most innovative tools for reservoir management purposes. The computer modelling of structures, rock properties and fluid flow in hydrocarbon reservoirs has evolved from a specialist activity to part of the standard desktop toolkit. The application of these techniques has allowed all disciplines of the subsurface team to collaborate in a common workspace. In today's asset teams, the role of the geological model in hydrocarbon development planning is key and will be for some time ahead. The challenges that face the geologists and engineers will be to provide more seamless interaction between static and dynamic models. This interaction requires the development of conventional and unconventional modelling algorithms and methodologies in order to provide more risk-assessed scenarios, thus enabling geologists and engineers to better understand and capture inherent uncertainties at each aspect of the geological model's life.

Book Rock Fractures and Fluid Flow

    Book Details:
  • Author : National Research Council
  • Publisher : National Academies Press
  • Release : 1996-08-27
  • ISBN : 0309049962
  • Pages : 568 pages

Download or read book Rock Fractures and Fluid Flow written by National Research Council and published by National Academies Press. This book was released on 1996-08-27 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientific understanding of fluid flow in rock fracturesâ€"a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storageâ€"has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.

Book Petroleum Abstracts

Download or read book Petroleum Abstracts written by and published by . This book was released on 1993 with total page 1752 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Naturally Fractured Reservoir Characterization

Download or read book Naturally Fractured Reservoir Characterization written by Wayne Narr and published by . This book was released on 2006-01-01 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Reservoir Geomechanics

Download or read book Reservoir Geomechanics written by Mark D. Zoback and published by Cambridge University Press. This book was released on 2010-04-01 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: This interdisciplinary book encompasses the fields of rock mechanics, structural geology and petroleum engineering to address a wide range of geomechanical problems that arise during the exploitation of oil and gas reservoirs. It considers key practical issues such as prediction of pore pressure, estimation of hydrocarbon column heights and fault seal potential, determination of optimally stable well trajectories, casing set points and mud weights, changes in reservoir performance during depletion, and production-induced faulting and subsidence. The book establishes the basic principles involved before introducing practical measurement and experimental techniques to improve recovery and reduce exploitation costs. It illustrates their successful application through case studies taken from oil and gas fields around the world. This book is a practical reference for geoscientists and engineers in the petroleum and geothermal industries, and for research scientists interested in stress measurements and their application to problems of faulting and fluid flow in the crust.

Book Coupled Geomechanics and Multiphase Flow Modeling in Naturally and Hydraulically Fractured Reservoirs

Download or read book Coupled Geomechanics and Multiphase Flow Modeling in Naturally and Hydraulically Fractured Reservoirs written by Yanli Pei and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluid injection and production in highly fractured unconventional reservoirs could induce complex stress reorientation and redistribution. The strong stress sensitivity of fractured formations may also lead to non-negligible fracture opening or closure under the reservoir loading or unloading process. Hence, a coupled flow and geomechanics model is in high demand to assist with stress prediction and production forecast in unconventional reservoirs. In this dissertation, an enhanced geomechanics model is developed for fractured reservoirs and integrated with the in-house compositional reservoir simulator – UTCOMP for coupled flow and geomechanics modeling. The multiphase flow model is solved using the finite volume method (FVM) with an embedded discrete fracture model (EDFM) to represent flow through complex fractures. Based on static fracture assumption, the finite element method (FEM) is applied to solve the geomechanics model by incorporating fracture effects on rock deformation through pore pressure changes. An iterative coupling procedure is implemented between fluid flow and geomechanics, and the 3D coupled model is applied to predict spatiotemporal stress evolution in single-layer and multilayer unconventional reservoirs. To consider dynamic fracture properties, the geomechanics model is further enhanced by the extended finite element method (XFEM) with a modified linear elastic proppant model. The fracture surface is under the coeffects of pore pressure and proppant particles, and various enrichment functions are introduced to reproduce the discontinuous fields over fracture paths. The enhanced geomechanics model is validated against classical Sneddon and Elliot’s problem and presents a first-order spatial convergence rate. Numerical studies indicate that modeling fracture closure is necessary for poorly propped, highly stressed, or fast depleted reservoirs, and fracture opening can be significant under high permeability and low stiffness conditions. The coupled flow and geomechanics model is finally combined with a displacement discontinuity method (DDM) hydraulic fracture model to establish an integrated reservoir-geomechanics-fracture model for the end-to-end optimization of secondary stimulations. It is applied to Permian Basin and Sichuan Basin tight formations to optimize parent-child well spacing at different infill times. The integrated model provides hands-on guidelines for refracturing and infill drilling in multilayer unconventional reservoirs and can be easily adapted to other basins under their unique data

Book Unconventional Reservoir Geomechanics

Download or read book Unconventional Reservoir Geomechanics written by Mark D. Zoback and published by . This book was released on 2016 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the beginning of the US shale gas revolution in 2005, the development of unconventional oil and gas resources has gathered tremendous pace around the world. This book provides a comprehensive overview of the key geologic, geophysical, and engineering principles that govern the development of unconventional reservoirs. The book begins with a detailed characterization of unconventional reservoir rocks: their composition and microstructure, mechanical properties, and the processes controlling fault slip and fluid flow. A discussion of geomechanical principles follows, including the state of stress, pore pressure, and the importance of fractures and faults. After reviewing the fundamentals of horizontal drilling, multi-stage hydraulic fracturing, and stimulation of slip on pre-existing faults, the key factors impacting hydrocarbon production are explored. The final chapters cover environmental impacts and how to mitigate hazards associated with induced seismicity. This text provides an essential overview for students, researchers, and industry professionals interested in unconventional reservoirs.