Download or read book Domain Decomposition Methods Algorithms and Theory written by Andrea Toselli and published by Springer Science & Business Media. This book was released on 2006-06-20 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a comprehensive presentation of some of the most successful and popular domain decomposition preconditioners for finite and spectral element approximations of partial differential equations. It places strong emphasis on both algorithmic and mathematical aspects. It covers in detail important methods such as FETI and balancing Neumann-Neumann methods and algorithms for spectral element methods.
Download or read book Domain Decomposition Methods in Science and Engineering written by Ralf Kornhuber and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: Domain decomposition is an active, interdisciplinary research area that is devoted to the development, analysis and implementation of coupling and decoupling strategies in mathematics, computational science, engineering and industry. A series of international conferences starting in 1987 set the stage for the presentation of many meanwhile classical results on substructuring, block iterative methods, parallel and distributed high performance computing etc. This volume contains a selection from the papers presented at the 15th International Domain Decomposition Conference held in Berlin, Germany, July 17-25, 2003 by the world's leading experts in the field. Its special focus has been on numerical analysis, computational issues,complex heterogeneous problems, industrial problems, and software development.
Download or read book Domain Decomposition Methods in Science and Engineering XVI written by Olof Widlund and published by Springer Science & Business Media. This book was released on 2007-07-30 with total page 783 pages. Available in PDF, EPUB and Kindle. Book excerpt: Domain decomposition is an active research area concerned with the development, analysis, and implementation of coupling and decoupling strategies in mathematical and computational models of natural and engineered systems. The present volume sets forth new contributions in areas of numerical analysis, computer science, scientific and industrial applications, and software development.
Download or read book Domain Decomposition Methods in Science and Engineering XIX written by Yunqing Huang and published by Springer Science & Business Media. This book was released on 2010-10-27 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: These are the proceedings of the 19th international conference on domain decomposition methods in science and engineering. Domain decomposition methods are iterative methods for solving the often very large linear or nonlinear systems of algebraic equations that arise in various problems in mathematics, computational science, engineering and industry. They are designed for massively parallel computers and take the memory hierarchy of such systems into account. This is essential for approaching peak floating point performance. There is an increasingly well-developed theory which is having a direct impact on the development and improvement of these algorithms.
Download or read book Domain Decomposition Methods 10 written by Jan Mandel and published by American Mathematical Soc.. This book was released on 1998 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the Tenth International Conference on Domain Decomposition Methods, which focused on the latest developments in realistic applications in structural mechanics, structural dynamics, computational fluid dynamics, and heat transfer. The proceedings of these conferences have become standard references in the field and contain seminal papers as well as the latest theoretical results and reports on practical applications.
Download or read book Domain based Parallelism and Problem Decomposition Methods in Computational Science and Engineering written by David E. Keyes and published by SIAM. This book was released on 1995-01-01 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: This refereed volume arose from the editors' recognition that physical scientists, engineers, and applied mathematicians are developing, in parallel, solutions to problems of parallelization. The cross-disciplinary field of scientific computation is bringing about better communication between heterogeneous computational groups, as they face this common challenge. This volume is one attempt to provide cross-disciplinary communication. Problem decomposition and the use of domain-based parallelism in computational science and engineering was the subject addressed at a workshop held at the University of Minnesota Supercomputer Institute in April 1994. The authors were subsequently able to address the relationships between their individual applications and independently developed approaches. This book is written for an interdisciplinary audience and concentrates on transferable algorithmic techniques, rather than the scientific results themselves. Cross-disciplinary editing was employed to identify jargon that needed further explanation and to ensure provision of a brief scientific background for each chapter at a tutorial level so that the physical significance of the variables is clear and correspondences between fields are visible.
Download or read book Elliptic Marching Methods and Domain Decomposition written by Patrick J. Roache and published by CRC Press. This book was released on 1995-06-29 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the first things a student of partial differential equations learns is that it is impossible to solve elliptic equations by spatial marching. This new book describes how to do exactly that, providing a powerful tool for solving problems in fluid dynamics, heat transfer, electrostatics, and other fields characterized by discretized partial differential equations. Elliptic Marching Methods and Domain Decomposition demonstrates how to handle numerical instabilities (i.e., limitations on the size of the problem) that appear when one tries to solve these discretized equations with marching methods. The book also shows how marching methods can be superior to multigrid and pre-conditioned conjugate gradient (PCG) methods, particularly when used in the context of multiprocessor parallel computers. Techniques for using domain decomposition together with marching methods are detailed, clearly illustrating the benefits of these techniques for applications in engineering, applied mathematics, and the physical sciences.
Download or read book Domain Decomposition Methods in Science and Engineering written by Alfio Quarteroni and published by American Mathematical Soc.. This book was released on 1994 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the proceedings of the Sixth International Conference on Domain Decomposition, held in June 1992 in Como, Italy. Much of the work in this field focuses on developing numerical methods for large algebraic systems.
Download or read book Absorbing Boundaries and Layers Domain Decomposition Methods written by L. Tourrette and published by Nova Publishers. This book was released on 2001 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: CD-ROM contains: Sections omitted from printing of text.
Download or read book Domain Decomposition Methods in Scientific and Engineering Computing written by David E. Keyes and published by American Mathematical Soc.. This book was released on 1994 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains proceedings from the Seventh International Conference on Domain Decomposition Methods, held at Pennsylvania State University in October 1993. The term ``domain decomposition'' has for nearly a decade been associated with the partly iterative, partly direct algorithms explored in the proceedings of this conference. Noteworthy trends in the current volume include progress in dealing with so-called ``bad parameters'' in elliptic partial differential equation problems, as well as developments in partial differential equations outside of the elliptically-dominated framework. Also described here are convergence and complexity results for novel discretizations, which bring with them new challenges in the derivation of appropriate operators for coarsened spaces. Implementations and architectural considerations are discussed, as well as partitioning tools and environments. In addition, the book describes a wide array of applications, from semiconductor device simulation to structural mechanics to aerodynamics. Presenting many of the latest results in the field, this book offers readers an up-to-date guide to the many facets of the theory and practice of domain decomposition.
Download or read book Recent Developments in Domain Decomposition Methods written by Luca F. Pavarino and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main goal of this book is to provide an overview of some of the most recent developments in the field of Domain Decomposition Methods. Domain decomposition relates to the construction of preconditioners for the large algebraic systems of equations which often arise in applications, by solving smaller instances of the same problem. It also relates to the construction of approximation methods built from different discretizations in different subdomains. The resulting methods are among the most successful parallel solvers for many large scale problems in computational science and engineering. The papers in this collection reflect some of the most active research areas in domain decomposition such as novel FETI, Neumann-Neumann, overlapping Schwarz and Mortar methods.
Download or read book Dirichlet dirichlet Domain Decomposition Methods For Elliptic Problems H And Hp Finite Element Discretizations written by Vadim Glebiovich Korneev and published by World Scientific. This book was released on 2015-01-29 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Domain decomposition (DD) methods provide powerful tools for constructing parallel numerical solution algorithms for large scale systems of algebraic equations arising from the discretization of partial differential equations. These methods are well-established and belong to a fast developing area. In this volume, the reader will find a brief historical overview, the basic results of the general theory of domain and space decomposition methods as well as the description and analysis of practical DD algorithms for parallel computing. It is typical to find in this volume that most of the presented DD solvers belong to the family of fast algorithms, where each component is efficient with respect to the arithmetical work. Readers will discover new analysis results for both the well-known basic DD solvers and some DD methods recently devised by the authors, e.g., for elliptic problems with varying chaotically piecewise constant orthotropism without restrictions on the finite aspect ratios.The hp finite element discretizations, in particular, by spectral elements of elliptic equations are given significant attention in current research and applications. This volume is the first to feature all components of Dirichlet-Dirichlet-type DD solvers for hp discretizations devised as numerical procedures which result in DD solvers that are almost optimal with respect to the computational work. The most important DD solvers are presented in the matrix/vector form algorithms that are convenient for practical use.
Download or read book An Introduction to Domain Decomposition Methods written by Victorita Dolean and published by SIAM. This book was released on 2015-12-08 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to offer an overview of the most popular domain decomposition methods for partial differential equations (PDEs). These methods are widely used for numerical simulations in solid mechanics, electromagnetism, flow in porous media, etc., on parallel machines from tens to hundreds of thousands of cores. The appealing feature of domain decomposition methods is that, contrary to direct methods, they are naturally parallel. The authors focus on parallel linear solvers. The authors present all popular algorithms, both at the PDE level and at the discrete level in terms of matrices, along with systematic scripts for sequential implementation in a free open-source finite element package as well as some parallel scripts. Also included is a new coarse space construction (two-level method) that adapts to highly heterogeneous problems.?
Download or read book Domain Decomposition Methods in Science and Engineering XXII written by Thomas Dickopf and published by Springer. This book was released on 2016-03-11 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: These are the proceedings of the 22nd International Conference on Domain Decomposition Methods, which was held in Lugano, Switzerland. With 172 participants from over 24 countries, this conference continued a long-standing tradition of internationally oriented meetings on Domain Decomposition Methods. The book features a well-balanced mix of established and new topics, such as the manifold theory of Schwarz Methods, Isogeometric Analysis, Discontinuous Galerkin Methods, exploitation of modern HPC architectures and industrial applications. As the conference program reflects, the growing capabilities in terms of theory and available hardware allow increasingly complex non-linear and multi-physics simulations, confirming the tremendous potential and flexibility of the domain decomposition concept.
Download or read book Computer Graphics through Key Mathematics written by Huw Jones and published by Springer Science & Business Media. This book was released on 2001-04-27 with total page 1078 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the mathematical concepts that underpin computer graphics. It is written in an approachable way, without burdening readers with the skills of ow to do'things. The author discusses those aspects of mathematics that relate to the computer synthesis of images, and so gives users a better understanding of the limitations of computer graphics systems. Users of computer graphics who have no formal training and wish to understand the essential foundations of computer graphics systems will find this book very useful, as will mathematicians who want to understand how their subject is used in computer image synthesis. '
Download or read book Computer Solution of Large Linear Systems written by Gerard Meurant and published by Elsevier. This book was released on 1999-06-16 with total page 777 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with numerical methods for solving large sparse linear systems of equations, particularly those arising from the discretization of partial differential equations. It covers both direct and iterative methods. Direct methods which are considered are variants of Gaussian elimination and fast solvers for separable partial differential equations in rectangular domains. The book reviews the classical iterative methods like Jacobi, Gauss-Seidel and alternating directions algorithms. A particular emphasis is put on the conjugate gradient as well as conjugate gradient -like methods for non symmetric problems. Most efficient preconditioners used to speed up convergence are studied. A chapter is devoted to the multigrid method and the book ends with domain decomposition algorithms that are well suited for solving linear systems on parallel computers.
Download or read book Numerical Solution of Partial Differential Equations on Parallel Computers written by Are Magnus Bruaset and published by Springer Science & Business Media. This book was released on 2006-03-05 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the dawn of computing, the quest for a better understanding of Nature has been a driving force for technological development. Groundbreaking achievements by great scientists have paved the way from the abacus to the supercomputing power of today. When trying to replicate Nature in the computer’s silicon test tube, there is need for precise and computable process descriptions. The scienti?c ?elds of Ma- ematics and Physics provide a powerful vehicle for such descriptions in terms of Partial Differential Equations (PDEs). Formulated as such equations, physical laws can become subject to computational and analytical studies. In the computational setting, the equations can be discreti ed for ef?cient solution on a computer, leading to valuable tools for simulation of natural and man-made processes. Numerical so- tion of PDE-based mathematical models has been an important research topic over centuries, and will remain so for centuries to come. In the context of computer-based simulations, the quality of the computed results is directly connected to the model’s complexity and the number of data points used for the computations. Therefore, computational scientists tend to ?ll even the largest and most powerful computers they can get access to, either by increasing the si e of the data sets, or by introducing new model terms that make the simulations more realistic, or a combination of both. Today, many important simulation problems can not be solved by one single computer, but calls for parallel computing.