EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Distributed Optimization  Game and Learning Algorithms

Download or read book Distributed Optimization Game and Learning Algorithms written by Huiwei Wang and published by Springer Nature. This book was released on 2021-01-04 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the fundamental theory of distributed optimization, game and learning. It includes those working directly in optimization,-and also many other issues like time-varying topology, communication delay, equality or inequality constraints,-and random projections. This book is meant for the researcher and engineer who uses distributed optimization, game and learning theory in fields like dynamic economic dispatch, demand response management and PHEV routing of smart grids.

Book Distributed Optimization  Game and Learning Algorithms

Download or read book Distributed Optimization Game and Learning Algorithms written by Huiwei Wang and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the fundamental theory of distributed optimization, game and learning. It includes those working directly in optimization,-and also many other issues like time-varying topology, communication delay, equality or inequality constraints,-and random projections. This book is meant for the researcher and engineer who uses distributed optimization, game and learning theory in fields like dynamic economic dispatch, demand response management and PHEV routing of smart grids.

Book Game Theoretic Learning and Distributed Optimization in Memoryless Multi Agent Systems

Download or read book Game Theoretic Learning and Distributed Optimization in Memoryless Multi Agent Systems written by Tatiana Tatarenko and published by Springer. This book was released on 2017-09-19 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents new efficient methods for optimization in realistic large-scale, multi-agent systems. These methods do not require the agents to have the full information about the system, but instead allow them to make their local decisions based only on the local information, possibly obtained during communication with their local neighbors. The book, primarily aimed at researchers in optimization and control, considers three different information settings in multi-agent systems: oracle-based, communication-based, and payoff-based. For each of these information types, an efficient optimization algorithm is developed, which leads the system to an optimal state. The optimization problems are set without such restrictive assumptions as convexity of the objective functions, complicated communication topologies, closed-form expressions for costs and utilities, and finiteness of the system’s state space.

Book Distributed Optimization and Learning

Download or read book Distributed Optimization and Learning written by Zhongguo Li and published by Elsevier. This book was released on 2024-07-18 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distributed Optimization and Learning: A Control-Theoretic Perspective illustrates the underlying principles of distributed optimization and learning. The book presents a systematic and self-contained description of distributed optimization and learning algorithms from a control-theoretic perspective. It focuses on exploring control-theoretic approaches and how those approaches can be utilized to solve distributed optimization and learning problems over network-connected, multi-agent systems. As there are strong links between optimization and learning, this book provides a unified platform for understanding distributed optimization and learning algorithms for different purposes. - Provides a series of the latest results, including but not limited to, distributed cooperative and competitive optimization, machine learning, and optimal resource allocation - Presents the most recent advances in theory and applications of distributed optimization and machine learning, including insightful connections to traditional control techniques - Offers numerical and simulation results in each chapter in order to reflect engineering practice and demonstrate the main focus of developed analysis and synthesis approaches

Book Distributed Optimization Based Control of Multi Agent Networks in Complex Environments

Download or read book Distributed Optimization Based Control of Multi Agent Networks in Complex Environments written by Minghui Zhu and published by Springer. This book was released on 2015-06-11 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a concise and in-depth exposition of specific algorithmic solutions for distributed optimization based control of multi-agent networks and their performance analysis. It synthesizes and analyzes distributed strategies for three collaborative tasks: distributed cooperative optimization, mobile sensor deployment and multi-vehicle formation control. The book integrates miscellaneous ideas and tools from dynamic systems, control theory, graph theory, optimization, game theory and Markov chains to address the particular challenges introduced by such complexities in the environment as topological dynamics, environmental uncertainties, and potential cyber-attack by human adversaries. The book is written for first- or second-year graduate students in a variety of engineering disciplines, including control, robotics, decision-making, optimization and algorithms and with backgrounds in aerospace engineering, computer science, electrical engineering, mechanical engineering and operations research. Researchers in these areas may also find the book useful as a reference.

Book Distributed Optimization  Advances in Theories  Methods  and Applications

Download or read book Distributed Optimization Advances in Theories Methods and Applications written by Huaqing Li and published by Springer Nature. This book was released on 2020-08-04 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a valuable reference guide for researchers in distributed optimization and for senior undergraduate and graduate students alike. Focusing on the natures and functions of agents, communication networks and algorithms in the context of distributed optimization for networked control systems, this book introduces readers to the background of distributed optimization; recent developments in distributed algorithms for various types of underlying communication networks; the implementation of computation-efficient and communication-efficient strategies in the execution of distributed algorithms; and the frameworks of convergence analysis and performance evaluation. On this basis, the book then thoroughly studies 1) distributed constrained optimization and the random sleep scheme, from an agent perspective; 2) asynchronous broadcast-based algorithms, event-triggered communication, quantized communication, unbalanced directed networks, and time-varying networks, from a communication network perspective; and 3) accelerated algorithms and stochastic gradient algorithms, from an algorithm perspective. Finally, the applications of distributed optimization in large-scale statistical learning, wireless sensor networks, and for optimal energy management in smart grids are discussed.

Book Proceedings of 2023 Chinese Intelligent Systems Conference

Download or read book Proceedings of 2023 Chinese Intelligent Systems Conference written by Yingmin Jia and published by Springer Nature. This book was released on 2023-11-08 with total page 870 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 19th Chinese Intelligent Systems Conference, CISC 2023, which was held during October 14–15, 2023, in Ningbo, Zhejiang, China. The book focuses on new theoretical results and techniques in the field of intelligent systems and control. This is achieved by providing in-depth studies of a number of important topics such as multi-agent systems, complex networks, intelligent robots, complex systems theory and swarm behavior, event-driven and data-driven control, robust and adaptive control, big data and brain science, process control, intelligent sensors and detection technology, deep learning and learning control, navigation and control of aerial vehicles, and so on. The book is particularly suitable for readers interested in learning intelligent systems and control and artificial intelligence. The book can benefit researchers, engineers and graduate students.

Book Networked Control Systems

    Book Details:
  • Author : Alberto Bemporad
  • Publisher : Springer Science & Business Media
  • Release : 2010-10-14
  • ISBN : 0857290320
  • Pages : 373 pages

Download or read book Networked Control Systems written by Alberto Bemporad and published by Springer Science & Business Media. This book was released on 2010-10-14 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book nds its origin in the WIDE PhD School on Networked Control Systems, which we organized in July 2009 in Siena, Italy. Having gathered experts on all the aspects of networked control systems, it was a small step to go from the summer school to the book, certainly given the enthusiasm of the lecturers at the school. We felt that a book collecting overviewson the important developmentsand open pr- lems in the eld of networked control systems could stimulate and support future research in this appealing area. Given the tremendouscurrentinterests in distributed control exploiting wired and wireless communication networks, the time seemed to be right for the book that lies now in front of you. The goal of the book is to set out the core techniques and tools that are ava- able for the modeling, analysis and design of networked control systems. Roughly speaking, the book consists of three parts. The rst part presents architectures for distributed control systems and models of wired and wireless communication n- works. In particular, in the rst chapter important technological and architectural aspects on distributed control systems are discussed. The second chapter provides insight in the behavior of communication channels in terms of delays, packet loss and information constraints leading to suitable modeling paradigms for commu- cation networks.

Book Distributed Optimization for Smart Cyber Physical Networks

Download or read book Distributed Optimization for Smart Cyber Physical Networks written by Giuseppe Notarstefano and published by . This book was released on 2019-12-11 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: In an increasingly connected world, the term cyber-physical networks has been coined to refer to the communication among devices that is turning smart devices into smart (cooperating) systems. The distinctive feature of such systems is that significant advantage can be obtained if its interconnected, complex nature is exploited. Several challenges arising in cyber-physical networks can be stated as optimization problems. Examples are estimation, decision, learning and control applications. In cyber-physical networks, the goal is to design algorithms, based on the exchange of information among the processors, that take advantage of the aggregated computational power. Distributed Optimization for Smart Cyber-Physical Networks provides a comprehensive overview of the most common approaches used to design distributed optimization algorithms, together with the theoretical analysis of the main schemes in their basic version. It identifies and formalizes classes of problem set-ups that arise in motivating application scenarios. For each set-up, in order to give the main tools for analysis, tailored distributed algorithms in simplified cases are reviewed. Extensions and generalizations of the basic schemes are also discussed at the end of each chapter. Distributed Optimization for Smart Cyber-Physical Networks provides the reader with an accessible overview of the current research and gives important pointers towards new developments. It is an excellent starting point for research and students unfamiliar with the topic.

Book Optimization in Machine Learning and Applications

Download or read book Optimization in Machine Learning and Applications written by Anand J. Kulkarni and published by Springer Nature. This book was released on 2019-11-29 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses one of the major applications of artificial intelligence: the use of machine learning to extract useful information from multimodal data. It discusses the optimization methods that help minimize the error in developing patterns and classifications, which further helps improve prediction and decision-making. The book also presents formulations of real-world machine learning problems, and discusses AI solution methodologies as standalone or hybrid approaches. Lastly, it proposes novel metaheuristic methods to solve complex machine learning problems. Featuring valuable insights, the book helps readers explore new avenues leading toward multidisciplinary research discussions.

Book Distributed Strategic Learning for Wireless Engineers

Download or read book Distributed Strategic Learning for Wireless Engineers written by Hamidou Tembine and published by CRC Press. This book was released on 2018-10-08 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although valued for its ability to allow teams to collaborate and foster coalitional behaviors among the participants, game theory’s application to networking systems is not without challenges. Distributed Strategic Learning for Wireless Engineers illuminates the promise of learning in dynamic games as a tool for analyzing network evolution and underlines the potential pitfalls and difficulties likely to be encountered. Establishing the link between several theories, this book demonstrates what is needed to learn strategic interaction in wireless networks under uncertainty, randomness, and time delays. It addresses questions such as: How much information is enough for effective distributed decision making? Is having more information always useful in terms of system performance? What are the individual learning performance bounds under outdated and imperfect measurement? What are the possible dynamics and outcomes if the players adopt different learning patterns? If convergence occurs, what is the convergence time of heterogeneous learning? What are the issues of hybrid learning? How can one develop fast and efficient learning schemes in scenarios where some players have more information than the others? What is the impact of risk-sensitivity in strategic learning systems? How can one construct learning schemes in a dynamic environment in which one of the players do not observe a numerical value of its own-payoffs but only a signal of it? How can one learn "unstable" equilibria and global optima in a fully distributed manner? The book provides an explicit description of how players attempt to learn over time about the game and about the behavior of others. It focuses on finite and infinite systems, where the interplay among the individual adjustments undertaken by the different players generates different learning dynamics, heterogeneous learning, risk-sensitive learning, and hybrid dynamics.

Book Network Games  Control  and Optimization

Download or read book Network Games Control and Optimization written by Samson Lasaulce and published by Birkhäuser. This book was released on 2017-02-16 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This contributed volume offers a collection of papers presented at the 2016 Network Games, Control, and Optimization conference (NETGCOOP), held at the University of Avignon in France, November 23-25, 2016. These papers highlight the increasing importance of network control and optimization in many networking application domains, such as mobile and fixed access networks, computer networks, social networks, transportation networks, and, more recently, electricity grids and biological networks. Covering a wide variety of both theoretical and applied topics in the areas listed above, the authors explore several conceptual and algorithmic tools that are needed for efficient and robust control operation, performance optimization, and better understanding the relationships between entities that may be acting cooperatively or selfishly in uncertain and possibly adversarial environments. As such, this volume will be of interest to applied mathematicians, computer scientists, engineers, and researchers in other related fields.

Book Smart Operation for Power Distribution Systems

Download or read book Smart Operation for Power Distribution Systems written by Daniel Pinheiro Bernardon and published by Springer. This book was released on 2018-07-27 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the operation of electrical distribution systems, presenting contemporary concepts and applications with a focus on integration for smart operation and grids. The authors address the main concepts and techniques of active management of smart electrical distribution system operation, including state estimation, self healing, volt-var control, protection systems, operations planning, and commercial and emergency dispatch. From each topic, an overview of concepts are given together with examples related to the management of these systems, thus providing a valuable resource for the design, implementation and management of efficient and truly sustainable smart systems.

Book Handbook of Game Theory

Download or read book Handbook of Game Theory written by Petyon Young and published by Elsevier. This book was released on 2014-10-01 with total page 1025 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ability to understand and predict behavior in strategic situations, in which an individual's success in making choices depends on the choices of others, has been the domain of game theory since the 1950s. Developing the theories at the heart of game theory has resulted in 8 Nobel Prizes and insights that researchers in many fields continue to develop. In Volume 4, top scholars synthesize and analyze mainstream scholarship on games and economic behavior, providing an updated account of developments in game theory since the 2002 publication of Volume 3, which only covers work through the mid 1990s. - Focuses on innovation in games and economic behavior - Presents coherent summaries of subjects in game theory - Makes details about game theory accessible to scholars in fields outside economics

Book Adversarial Machine Learning

Download or read book Adversarial Machine Learning written by Aneesh Sreevallabh Chivukula and published by Springer Nature. This book was released on 2023-03-06 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: A critical challenge in deep learning is the vulnerability of deep learning networks to security attacks from intelligent cyber adversaries. Even innocuous perturbations to the training data can be used to manipulate the behaviour of deep networks in unintended ways. In this book, we review the latest developments in adversarial attack technologies in computer vision; natural language processing; and cybersecurity with regard to multidimensional, textual and image data, sequence data, and temporal data. In turn, we assess the robustness properties of deep learning networks to produce a taxonomy of adversarial examples that characterises the security of learning systems using game theoretical adversarial deep learning algorithms. The state-of-the-art in adversarial perturbation-based privacy protection mechanisms is also reviewed. We propose new adversary types for game theoretical objectives in non-stationary computational learning environments. Proper quantification of the hypothesis set in the decision problems of our research leads to various functional problems, oracular problems, sampling tasks, and optimization problems. We also address the defence mechanisms currently available for deep learning models deployed in real-world environments. The learning theories used in these defence mechanisms concern data representations, feature manipulations, misclassifications costs, sensitivity landscapes, distributional robustness, and complexity classes of the adversarial deep learning algorithms and their applications. In closing, we propose future research directions in adversarial deep learning applications for resilient learning system design and review formalized learning assumptions concerning the attack surfaces and robustness characteristics of artificial intelligence applications so as to deconstruct the contemporary adversarial deep learning designs. Given its scope, the book will be of interest to Adversarial Machine Learning practitioners and Adversarial Artificial Intelligence researchers whose work involves the design and application of Adversarial Deep Learning.

Book Distributed Economic Operation in Smart Grid  Model Based and Model Free Perspectives

Download or read book Distributed Economic Operation in Smart Grid Model Based and Model Free Perspectives written by Jiahu Qin and published by Springer Nature. This book was released on 2023-01-25 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to work out the distributed economic operation in smart grids in a systematic way, which ranges from model-based to model-free perspectives. The main contributions of this book can be summarized into three folds. First, we investigate the fundamental economic operation problems in smart grids from model-based perspective. Specifically, these problems can be modeled as deterministic optimization models, and we propose some distributed optimization algorithms by integrating the multi-agent consensus theory and optimization techniques to achieve the distributed coordination of various generation units and loads. Second, due to the randomness of the large-scale renewable energies and the flexibility of the loads, we further address these economic operation problems from a model-free perspective, and we propose learning-based approaches to address the uncertainty and randomness. At last, we extend the idea of model-based and model-free algorithms to plug-in electric vehicles (PEVs) charging/discharging scheduling problem, the key challenge of which involves multiple objectives simultaneously while the behavior of PEVs and the electricity price are intrinsically random. This book presents several recent theoretical findings on distributed economic operation in smart grids from model-based and model-free perspectives. By systematically integrating novel ideas, fresh insights, and rigorous results, this book provides a base for further theoretical research on distributed economic operation in smart grids. It can be a reference for graduates and researchers to study the operation and management in smart grids. Some prerequisites for reading this book include optimization theory, matrix theory, game theory, reinforcement learning, etc.

Book Scaling Up Machine Learning

Download or read book Scaling Up Machine Learning written by Ron Bekkerman and published by Cambridge University Press. This book was released on 2012 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: This integrated collection covers a range of parallelization platforms, concurrent programming frameworks and machine learning settings, with case studies.