EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Distributed and economic model predictive control  beyond setpoint stabilization

Download or read book Distributed and economic model predictive control beyond setpoint stabilization written by Matthias A. Müller and published by Logos Verlag Berlin GmbH. This book was released on 2014 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis, we study model predictive control (MPC) schemes for control tasks which go beyond the classical objective of setpoint stabilization. In particular, we consider two classes of such control problems, namely distributed MPC for cooperative control in networks of multiple interconnected systems, and economic MPC, where the main focus is on the optimization of some general performance criterion which is possibly related to the economics of a system. The contributions of this thesis are to analyze various systems theoretic properties occurring in these type of control problems, and to develop distributed and economic MPC schemes with certain desired (closed-loop) guarantees. To be more precise, in the field of distributed MPC we propose different algorithms which are suitable for general cooperative control tasks in networks of interacting systems. We show that the developed distributed MPC frameworks are such that the desired cooperative goal is achieved, while coupling constraints between the systems are satisfied. Furthermore, we discuss implementation and scalability issues for the derived algorithms, as well as the necessary communication requirements between the systems. In the field of economic MPC, the contributions of this thesis are threefold. Firstly, we analyze a crucial dissipativity condition, in particular its necessity for optimal steady-state operation of a system and its robustness with respect to parameter changes. Secondly, we develop economic MPC schemes which also take average constraints into account. Thirdly, we propose an economic MPC framework with self-tuning terminal cost and a generalized terminal constraint, and we show how self-tuning update rules for the terminal weight can be derived such that desirable closed-loop performance bounds can be established.

Book Recent Advances in Model Predictive Control

Download or read book Recent Advances in Model Predictive Control written by Timm Faulwasser and published by Springer Nature. This book was released on 2021-04-17 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on distributed and economic Model Predictive Control (MPC) with applications in different fields. MPC is one of the most successful advanced control methodologies due to the simplicity of the basic idea (measure the current state, predict and optimize the future behavior of the plant to determine an input signal, and repeat this procedure ad infinitum) and its capability to deal with constrained nonlinear multi-input multi-output systems. While the basic idea is simple, the rigorous analysis of the MPC closed loop can be quite involved. Here, distributed means that either the computation is distributed to meet real-time requirements for (very) large-scale systems or that distributed agents act autonomously while being coupled via the constraints and/or the control objective. In the latter case, communication is necessary to maintain feasibility or to recover system-wide optimal performance. The term economic refers to general control tasks and, thus, goes beyond the typically predominant control objective of set-point stabilization. Here, recently developed concepts like (strict) dissipativity of optimal control problems or turnpike properties play a crucial role. The book collects research and survey articles on recent ideas and it provides perspectives on current trends in nonlinear model predictive control. Indeed, the book is the outcome of a series of six workshops funded by the German Research Foundation (DFG) involving early-stage career scientists from different countries and from leading European industry stakeholders.

Book Learning based Model Predictive Control with closed loop guarantees

Download or read book Learning based Model Predictive Control with closed loop guarantees written by Raffaele Soloperto and published by Logos Verlag Berlin GmbH. This book was released on 2023-11-13 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: The performance of model predictive control (MPC) largely depends on the accuracy of the prediction model and of the constraints the system is subject to. However, obtaining an accurate knowledge of these elements might be expensive in terms of money and resources, if at all possible. In this thesis, we develop novel learning-based MPC frameworks that actively incentivize learning of the underlying system dynamics and of the constraints, while ensuring recursive feasibility, constraint satisfaction, and performance bounds for the closed-loop. In the first part, we focus on the case of inaccurate models, and analyze learning-based MPC schemes that include, in addition to the primary cost, a learning cost that aims at generating informative data by inducing excitation in the system. In particular, we first propose a nonlinear MPC framework that ensures desired performance bounds for the resulting closed-loop, and then we focus on linear systems subject to uncertain parameters and noisy output measurements. In order to ensure that the desired learning phase occurs in closed-loop operations, we then propose an MPC framework that is able to guarantee closed-loop learning of the controlled system. In the last part of the thesis, we investigate the scenario where the system is known but evolves in a partially unknown environment. In such a setup, we focus on a learning-based MPC scheme that incentivizes safe exploration if and only if this might yield to a performance improvement.

Book Performance and Constraint Satisfaction in Robust Economic Model Predictive Control

Download or read book Performance and Constraint Satisfaction in Robust Economic Model Predictive Control written by Florian A. Bayer and published by Logos Verlag Berlin GmbH. This book was released on 2017 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis, we develop a novel framework for model predictive control (MPC) which combines the concepts of robust MPC and economic MPC. The goal of this thesis is to develop and analyze MPC schemes for nonlinear discrete-time systems which explicitly consider the influence of disturbances on arbitrary performance criteria. Instead of regarding the two aspects separately, we propose robust economic MPC approaches that integrate information which is available about the disturbance directly into the economic framework. In more detail, we develop three concepts which differ in which information about the disturbance is used and how this information is taken into account. Furthermore, we provide a thorough theoretical analysis for each of the three approaches. To this end, we present results on the asymptotic average performance as well as on optimal operating regimes. Optimal operating regimes are closely related to the notion of dissipativity, which is therefore analyzed for the presented concepts. Under suitable assumptions, results on necessity and sufficiency of dissipativity for optimal steady-state operation are established for all three robust economic MPC concepts. A detailed discussion is provided which compares the different performance statements derived for the approaches as well as the respective notions of dissipativity.

Book Handbook of Model Predictive Control

Download or read book Handbook of Model Predictive Control written by Saša V. Raković and published by Springer. This book was released on 2018-09-01 with total page 693 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent developments in model-predictive control promise remarkable opportunities for designing multi-input, multi-output control systems and improving the control of single-input, single-output systems. This volume provides a definitive survey of the latest model-predictive control methods available to engineers and scientists today. The initial set of chapters present various methods for managing uncertainty in systems, including stochastic model-predictive control. With the advent of affordable and fast computation, control engineers now need to think about using “computationally intensive controls,” so the second part of this book addresses the solution of optimization problems in “real” time for model-predictive control. The theory and applications of control theory often influence each other, so the last section of Handbook of Model Predictive Control rounds out the book with representative applications to automobiles, healthcare, robotics, and finance. The chapters in this volume will be useful to working engineers, scientists, and mathematicians, as well as students and faculty interested in the progression of control theory. Future developments in MPC will no doubt build from concepts demonstrated in this book and anyone with an interest in MPC will find fruitful information and suggestions for additional reading.

Book New Directions on Model Predictive Control

Download or read book New Directions on Model Predictive Control written by Jinfeng Liu and published by MDPI. This book was released on 2019-01-16 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "New Directions on Model Predictive Control" that was published in Mathematics

Book Model Predictive Control in the Process Industry

Download or read book Model Predictive Control in the Process Industry written by Eduardo F. Camacho and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors.

Book Economic Model Predictive Control

Download or read book Economic Model Predictive Control written by Matthew Ellis and published by Springer. This book was released on 2016-07-27 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents general methods for the design of economic model predictive control (EMPC) systems for broad classes of nonlinear systems that address key theoretical and practical considerations including recursive feasibility, closed-loop stability, closed-loop performance, and computational efficiency. Specifically, the book proposes: Lyapunov-based EMPC methods for nonlinear systems; two-tier EMPC architectures that are highly computationally efficient; and EMPC schemes handling explicitly uncertainty, time-varying cost functions, time-delays and multiple-time-scale dynamics. The proposed methods employ a variety of tools ranging from nonlinear systems analysis, through Lyapunov-based control techniques to nonlinear dynamic optimization. The applicability and performance of the proposed methods are demonstrated through a number of chemical process examples. The book presents state-of-the-art methods for the design of economic model predictive control systems for chemical processes.In addition to being mathematically rigorous, these methods accommodate key practical issues, for example, direct optimization of process economics, time-varying economic cost functions and computational efficiency. Numerous comments and remarks providing fundamental understanding of the merging of process economics and feedback control into a single framework are included. A control engineer can easily tailor the many detailed examples of industrial relevance given within the text to a specific application. The authors present a rich collection of new research topics and references to significant recent work making Economic Model Predictive Control an important source of information and inspiration for academics and graduate students researching the area and for process engineers interested in applying its ideas.

Book Economic Nonlinear Model Predictive Control

Download or read book Economic Nonlinear Model Predictive Control written by Timm Faulwasser and published by Foundations and Trends in Systems and Control. This book was released on 2018-01-12 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, Economic Model Predictive Control (EMPC) has received considerable attention of many research groups. The present tutorial survey summarizes state-of-the-art approaches in EMPC. In this context EMPC is to be understood as receding-horizon optimal control with a stage cost that does not simply penalize the distance to a desired equilibrium but encodes more sophisticated economic objectives. This survey provides a comprehensive overview of EMPC stability results: with and without terminal constraints, with and without dissipativity assumptions, with averaged constraints, formulations with multiple objectives and generalized terminal constraints as well as Lyapunov-based approaches.

Book Model Predictive Control of Microgrids

Download or read book Model Predictive Control of Microgrids written by Carlos Bordons and published by Springer Nature. This book was released on 2019-09-12 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book shows how the operation of renewable-energy microgrids can be facilitated by the use of model predictive control (MPC). It gives readers a wide overview of control methods for microgrid operation at all levels, ranging from quality of service, to integration in the electricity market. MPC-based solutions are provided for the main control issues related to energy management and optimal operation of microgrids. The authors present MPC techniques for case studies that include different renewable sources – mainly photovoltaic and wind – as well as hybrid storage using batteries, hydrogen and supercapacitors. Experimental results for a pilot-scale microgrid are also presented, as well as simulations of scheduling in the electricity market and integration of electric and hybrid vehicles into the microgrid. in order to replicate the examples provided in the book and to develop and validate control algorithms on existing or projected microgrids. Model Predictive Control of Microgrids will interest researchers and practitioners, enabling them to keep abreast of a rapidly developing field. The text will also help to guide graduate students through processes from the conception and initial design of a microgrid through its implementation to the optimization of microgrid management. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.

Book Networked and Distributed Predictive Control

Download or read book Networked and Distributed Predictive Control written by Panagiotis D. Christofides and published by Springer Science & Business Media. This book was released on 2011-04-07 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Networked and Distributed Predictive Control presents rigorous, yet practical, methods for the design of networked and distributed predictive control systems – the first book to do so. The design of model predictive control systems using Lyapunov-based techniques accounting for the influence of asynchronous and delayed measurements is followed by a treatment of networked control architecture development. This shows how networked control can augment dedicated control systems in a natural way and takes advantage of additional, potentially asynchronous and delayed measurements to maintain closed loop stability and significantly to improve closed-loop performance. The text then shifts focus to the design of distributed predictive control systems that cooperate efficiently in computing optimal manipulated input trajectories that achieve desired stability, performance and robustness specifications but spend a fraction of the time required by centralized control systems. Key features of this book include: • new techniques for networked and distributed control system design; • insight into issues associated with networked and distributed predictive control and their solution; • detailed appraisal of industrial relevance using computer simulation of nonlinear chemical process networks and wind- and solar-energy-generation systems; and • integrated exposition of novel research topics and rich resource of references to significant recent work. A full understanding of Networked and Distributed Predictive Control requires a basic knowledge of differential equations, linear and nonlinear control theory and optimization methods and the book is intended for academic researchers and graduate students studying control and for process control engineers. The constant attention to practical matters associated with implementation of the theory discussed will help each of these groups understand the application of the book’s methods in greater depth.

Book Model Predictive Control

Download or read book Model Predictive Control written by Basil Kouvaritakis and published by Springer. This book was released on 2015-12-01 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques. Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplicative and stochastic model uncertainty. The book provides: extensive use of illustrative examples; sample problems; and discussion of novel control applications such as resource allocation for sustainable development and turbine-blade control for maximized power capture with simultaneously reduced risk of turbulence-induced damage. Graduate students pursuing courses in model predictive control or more generally in advanced or process control and senior undergraduates in need of a specialized treatment will find Model Predictive Control an invaluable guide to the state of the art in this important subject. For the instructor it provides an authoritative resource for the construction of courses.

Book Feedback Systems

Download or read book Feedback Systems written by Karl Johan Åström and published by Princeton University Press. This book was released on 2021-02-02 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory

Book Flight Stability and Automatic Control

Download or read book Flight Stability and Automatic Control written by Robert C. Nelson and published by . This book was released on 1998 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edition of this this flight stability and controls guide features an unintimidating math level, full coverage of terminology, and expanded discussions of classical to modern control theory and autopilot designs. Extensive examples, problems, and historical notes, make this concise book a vital addition to the engineer's library.

Book Applied Predictive Modeling

    Book Details:
  • Author : Max Kuhn
  • Publisher : Springer Science & Business Media
  • Release : 2013-05-17
  • ISBN : 1461468493
  • Pages : 595 pages

Download or read book Applied Predictive Modeling written by Max Kuhn and published by Springer Science & Business Media. This book was released on 2013-05-17 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.

Book Control Theory Tutorial

Download or read book Control Theory Tutorial written by Steven A. Frank and published by Springer. This book was released on 2018-05-29 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access Brief introduces the basic principles of control theory in a concise self-study guide. It complements the classic texts by emphasizing the simple conceptual unity of the subject. A novice can quickly see how and why the different parts fit together. The concepts build slowly and naturally one after another, until the reader soon has a view of the whole. Each concept is illustrated by detailed examples and graphics. The full software code for each example is available, providing the basis for experimenting with various assumptions, learning how to write programs for control analysis, and setting the stage for future research projects. The topics focus on robustness, design trade-offs, and optimality. Most of the book develops classical linear theory. The last part of the book considers robustness with respect to nonlinearity and explicitly nonlinear extensions, as well as advanced topics such as adaptive control and model predictive control. New students, as well as scientists from other backgrounds who want a concise and easy-to-grasp coverage of control theory, will benefit from the emphasis on concepts and broad understanding of the various approaches. Electronic codes for this title can be downloaded from https://extras.springer.com/?query=978-3-319-91707-8

Book Economic Model Predictive Control

    Book Details:
  • Author : Helen Durand
  • Publisher : Foundations and Trends (R) in Systems and Control
  • Release : 2018-06-19
  • ISBN : 9781680834321
  • Pages : 68 pages

Download or read book Economic Model Predictive Control written by Helen Durand and published by Foundations and Trends (R) in Systems and Control. This book was released on 2018-06-19 with total page 68 pages. Available in PDF, EPUB and Kindle. Book excerpt: Economic Model Predictive Control (EMPC) is a control strategy that moves process operation away from the steady-state paradigm toward a potentially time-varying operating strategy to improve process profitability. The EMPC literature is replete with evidence that this new paradigm may enhance process profits when a model of the chemical process provides a sufficiently accurate representation of the process dynamics. Systems using EMPC often neglect the dynamics associated with equipment and are often neglected when modeling a chemical process. Recent studies have shown they can significantly impact the effectiveness of an EMPC system. Concentrating on valve behavior in a chemical process, this monograph develops insights into the manner in which equipment behavior should impact the design process for EMPC and to provide a perspective on a number of open research topics in this direction. Written in tutorial style, this monograph provides the reader with a full literature review of the topic and demonstrates how these techniques can be adopted in a practical system.