EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Directional Solidification of a Binary Alloy Using the Phase Field Model

Download or read book Directional Solidification of a Binary Alloy Using the Phase Field Model written by Zhiqiang Bi and published by . This book was released on 2002 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quantitative Phase Field Modelling of Solidification

Download or read book Quantitative Phase Field Modelling of Solidification written by Nikolas Provatas and published by CRC Press. This book was released on 2021-10-12 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a study of phase field modelling of solidification in metal alloy systems. It is divided in two main themes. The first half discusses several classes of quantitative multi-order parameter phase field models for multi-component alloy solidification. These are derived in grand potential ensemble, thus tracking solidification in alloys through the evolution of the chemical potentials of solute species rather than the more commonly used solute concentrations. The use of matched asymptotic analysis for making phase field models quantitative is also discussed at length, and derived in detail in order to make this somewhat abstract topic accessible to students. The second half of the book studies the application of phase field modelling to rapid solidification where solute trapping and interface undercooling follow highly non-equilibrium conditions. In this limit, matched asymptotic analysis is used to map phase field evolution equations onto the continuous growth model, which is generally accepted as a sharp-interface description of solidification at rapid solidification rates. This book will be of interest to graduate students and researchers in materials science and materials engineering. Key Features Presents a clear path to develop quantitative multi-phase and multi-component phase field models for solidification and other phase transformation kinetics Derives and discusses the quantitative nature of the model formulations through matched interface asymptotic analysis Explores a framework for quantitative treatment of rapid solidification to control solute trapping and solute drag dynamics

Book Computational Thermodynamics

Download or read book Computational Thermodynamics written by H. L. Lukas and published by . This book was released on 2007-07-12 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Phase diagrams are used in materials research and engineering to understand the interrelationship between composition, microstructure and process conditions. In complex systems, computational methods such as CALPHAD are employed to model thermodynamic properties for each phase and simulate multicomponent phase behavior. Written by recognized experts in the field, this is the first introductory guide to the CALPHAD method, providing a theoretical and practical approach. Building on core thermodynamic principles, this book applies crystallography, first principles methods and experimental data to computational phase behavior modeling using the CALPHAD method. With a chapter dedicated to creating thermodynamic databases, the reader will be confident in assessing, optimizing and validating complex thermodynamic systems alongside database construction and manipulation. Several case studies put the methods into a practical context, making this suitable for use on advanced materials design and engineering courses and an invaluable reference to those using thermodynamic data in their research or simulations.

Book Phase Field Methods in Materials Science and Engineering

Download or read book Phase Field Methods in Materials Science and Engineering written by Nikolas Provatas and published by John Wiley & Sons. This book was released on 2011-07-26 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive and self-contained, one-stop source discusses phase-field methodology in a fundamental way, explaining advanced numerical techniques for solving phase-field and related continuum-field models. It also presents numerical techniques used to simulate various phenomena in a detailed, step-by-step way, such that readers can carry out their own code developments. Features many examples of how the methods explained can be used in materials science and engineering applications.

Book Phase field simulations of multi component solidification and coarsening based on thermodynamic datasets

Download or read book Phase field simulations of multi component solidification and coarsening based on thermodynamic datasets written by Schulz, Sebastian and published by KIT Scientific Publishing. This book was released on 2017-02-22 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: The utilization of thermodynamic and mobility data plays a major role in phase-field modeling. This work discusses different formulations for the thermodynamic quantities of a grand potential model along with practices to determine parameters from datasets. The framework is used to study solidification of Al-Si-Mg for a variation of composition, diffusivities and surface energy anisotropies. To verify the simulations, they are compared with solidification theories.

Book Lattice Boltzmann Modeling

    Book Details:
  • Author : Michael C. Sukop
  • Publisher : Springer Science & Business Media
  • Release : 2007-04-05
  • ISBN : 3540279822
  • Pages : 178 pages

Download or read book Lattice Boltzmann Modeling written by Michael C. Sukop and published by Springer Science & Business Media. This book was released on 2007-04-05 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is a basic introduction to Lattice Boltzmann models that emphasizes intuition and simplistic conceptualization of processes, while avoiding the complex mathematics that underlies LB models. The model is viewed from a particle perspective where collisions, streaming, and particle-particle/particle-surface interactions constitute the entire conceptual framework. Beginners and those whose interest is in model application over detailed mathematics will find this a powerful 'quick start' guide. Example simulations, exercises, and computer codes are included.

Book Solidification

    Book Details:
  • Author : Michel Rappaz
  • Publisher : EPFL Press
  • Release : 2009-08-21
  • ISBN : 9780849382383
  • Pages : 656 pages

Download or read book Solidification written by Michel Rappaz and published by EPFL Press. This book was released on 2009-08-21 with total page 656 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solidification is one of the oldest processes for producing useful implements and remains one of the most important modern commercial processes. This text describes the fundamentals of the technology in a coherent way, using consistent notation.

Book Numerical Simulation of Solidification

Download or read book Numerical Simulation of Solidification written by Jin-Young Jung and published by . This book was released on 2000 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Adjoint Method for the Design of Directional Binary Alloy Solidification Processes in the Presence of a Strong Magnetic Field

Download or read book The Adjoint Method for the Design of Directional Binary Alloy Solidification Processes in the Presence of a Strong Magnetic Field written by Rajiv Sampath and published by . This book was released on 2001 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Theory and Numerics of Phase Field Models for Solidification of Binary Alloys

Download or read book Theory and Numerics of Phase Field Models for Solidification of Binary Alloys written by Philip Croné and published by . This book was released on 2015 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Phase field Model for Technical Alloy Solidification

Download or read book A Phase field Model for Technical Alloy Solidification written by Janin Eiken and published by . This book was released on 2010 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Phase field Investigation on the Non equilibrium Interface Dynamics of Rapid Alloy Solidification

Download or read book Phase field Investigation on the Non equilibrium Interface Dynamics of Rapid Alloy Solidification written by and published by . This book was released on 2011 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: The research program reported here is focused on critical issues that represent conspicuous gaps in current understanding of rapid solidification, limiting our ability to predict and control microstructural evolution (id est morphological dynamics and microsegregation) at high undercooling, where conditions depart significantly from local equilibrium. More specifically, through careful application of phase-field modeling, using appropriate thin-interface and anti-trapping corrections and addressing important details such as transient effects and a velocity-dependent (id est adaptive) numerics, the current analysis provides a reasonable simulation-based picture of non-equilibrium solute partitioning and the corresponding oscillatory dynamics associated with single-phase rapid solidification and show that this method is a suitable means for a self-consistent simulation of transient behavior and operating point selection under rapid growth conditions. Moving beyond the limitations of conventional theoretical/analytical treatments of non-equilibrium solute partitioning, these results serve to substantiate recent experimental findings and analytical treatments for single-phase rapid solidification. The departure from the equilibrium solid concentration at the solid-liquid interface was often observed during rapid solidification, and the energetic associated non-equilibrium solute partitioning has been treated in detail, providing possible ranges of interface concentrations for a given growth condition. Use of these treatments for analytical description of specific single-phase dendritic and cellular operating point selection, however, requires a model for solute partitioning under a given set of growth conditions. Therefore, analytical solute trapping models which describe the chemical partitioning as a function of steady state interface velocities have been developed and widely utilized in most of the theoretical investigations of rapid solidification. However, these solute trapping models are not rigorously verified due to the difficulty in experimentally measuring under rapid growth conditions. Moreover, since these solute trapping models include kinetic parameters which are difficult to directly measure from experiments, application of the solute trapping models or the associated analytic rapid solidification model is limited. These theoretical models for steady state rapid solidification which incorporate the solute trapping models do not describe the interdependency of solute diffusion, interface kinetics, and alloy thermodynamics. The phase-field approach allows calculating, spontaneously, the non-equilibrium growth effects of alloys and the associated time-dependent growth dynamics, without making the assumptions that solute partitioning is an explicit function of velocity, as is the current convention. In the research described here, by utilizing the phase-field model in the thin-interface limit, incorporating the anti-trapping current term, more quantitatively valid interface kinetics and solute diffusion across the interface are calculated. In order to sufficiently resolve the physical length scales (id est interface thickness and diffusion boundary length), grid spacings are continually adjusted in calculations. The full trajectories of transient planar growth dynamics under rapid directional solidification conditions with different pulling velocities are described. As a validation of a model, the predicted steady state conditions are consistent with the analytic approach for rapid growth. It was confirmed that rapid interface dynamics exhibits the abrupt acceleration of the planar front when the effect of the non-equilibrium solute partitioning at the interface becomes signi ficant. This is consistent with the previous linear stability analysis for the non-equilibrium interface dynamics. With an appropriate growth condition, the continuous oscillation dynamics was able to be simulated using continually adjusting grid spac...

Book Continuum Scale Simulation of Engineering Materials

Download or read book Continuum Scale Simulation of Engineering Materials written by Dierk Raabe and published by John Wiley & Sons. This book was released on 2006-03-06 with total page 885 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book fills a gap by presenting our current knowledge and understanding of continuum-based concepts behind computational methods used for microstructure and process simulation of engineering materials above the atomic scale. The volume provides an excellent overview on the different methods, comparing the different methods in terms of their respective particular weaknesses and advantages. This trains readers to identify appropriate approaches to the new challenges that emerge every day in this exciting domain. Divided into three main parts, the first is a basic overview covering fundamental key methods in the field of continuum scale materials simulation. The second one then goes on to look at applications of these methods to the prediction of microstructures, dealing with explicit simulation examples, while the third part discusses example applications in the field of process simulation. By presenting a spectrum of different computational approaches to materials, the book aims to initiate the development of corresponding virtual laboratories in the industry in which these methods are exploited. As such, it addresses graduates and undergraduates, lecturers, materials scientists and engineers, physicists, biologists, chemists, mathematicians, and mechanical engineers.