EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Direct Vitrification of Plutonium containing Materials  PCM s  with the Glass Material Oxidation and Dissolution System  GMODS

Download or read book Direct Vitrification of Plutonium containing Materials PCM s with the Glass Material Oxidation and Dissolution System GMODS written by and published by . This book was released on 2001 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The end of the cold war has resulted in excess PCMs from nuclear weapons and associated production facilities. Consequently, the US government has undertaken studies to determine how best to manage and dispose of this excess material. The issues include (a) ensurance of domestic health, environment, and safety in handling, storage, and disposition, (b) international arms control agreements with Russia and other countries, and (c) economics. One major set of options is to convert the PCMs into glass for storage or disposal. The chemically inert characteristics of glasses make them a desirable chemical form for storage or disposal of radioactive materials. A glass may contain only plutonium, or it may contain plutonium along with other radioactive materials and nonradioactive materials. GMODS is a new process for the direct conversion of PCMs (i.e., plutonium metal, scrap, and residues) to glass. The plutonium content of these materials varies from a fraction of a percent to pure plutonium. GMODS has the capability to also convert other metals, ceramics, and amorphous solids to glass, destroy organics, and convert chloride-containing materials into a low-chloride glass and a secondary clean chloride salt strewn. This report is the initial study of GMODS for vitrification of PCMs as input to ongoing studies of plutonium management options. Several tasks were completed: initial analysis of process thermodynamics, initial flowsheet analysis, identification of equipment options, proof-of-principle experiments, and identification of uncertainties.

Book Direct Vitrification of Plutonium containing Materials  PCMs    with the Glass Material Oxidation and Dissolution System  GMODS

Download or read book Direct Vitrification of Plutonium containing Materials PCMs with the Glass Material Oxidation and Dissolution System GMODS written by and published by . This book was released on 1995 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: The end of the cold war has resulted in excess PCMs from nuclear weapons and associated production facilities. Consequently, the US government has undertaken studies to determine how best to manage and dispose of this excess material. The issues include (a) ensurance of domestic health, environment, and safety in handling, storage, and disposition, (b) international arms control agreements with Russia and other countries, and (c) economics. One major set of options is to convert the PCMs into glass for storage or disposal. The chemically inert characteristics of glasses make them a desirable chemical form for storage or disposal of radioactive materials. A glass may contain only plutonium, or it may contain plutonium along with other radioactive materials and nonradioactive materials. GMODS is a new process for the direct conversion of PCMs (i.e., plutonium metal, scrap, and residues) to glass. The plutonium content of these materials varies from a fraction of a percent to pure plutonium. GMODS has the capability to also convert other metals, ceramics, and amorphous solids to glass, destroy organics, and convert chloride-containing materials into a low-chloride glass and a secondary clean chloride salt strewn. This report is the initial study of GMODS for vitrification of PCMs as input to ongoing studies of plutonium management options. Several tasks were completed: initial analysis of process thermodynamics, initial flowsheet analysis, identification of equipment options, proof-of-principle experiments, and identification of uncertainties.

Book Conversion of Plutonium containing Materials Into Borosilicate Glass Using the Glass Material Oxidation and Dissolution System

Download or read book Conversion of Plutonium containing Materials Into Borosilicate Glass Using the Glass Material Oxidation and Dissolution System written by and published by . This book was released on 1996 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt: The end of the cold war has resulted in excess plutonium-containing materials (PCMs) in multiple chemical forms. Major problems are associated with the long-term management of these materials: safeguards and nonproliferation issues; health, environment, and safety concerns; waste management requirements; and high storage costs. These issues can be addressed by conversion of the PCMs to glass: however, conventional glass processes require oxide-like feed materials. Conversion of PCMs to oxide-like materials followed by vitrification is a complex and expensive process. A new vitrification process has been invented, the Glass Material Oxidation and Dissolution System (GMODS) to allow direct conversion of PCMs to glass. GMODS directly converts metals, ceramics, and amorphous solids to glass; oxidizes organics with the residue converted to glass; and converts chlorides to borosilicate glass and a secondary sodium chloride stream. Laboratory work has demonstrated the conversion of cerium (a plutonium surrogate), uranium (a plutonium surrogate), Zircaloy, stainless steel, multiple oxides, and other materials to glass. Equipment options have been identified for processing rates between 1 and 100,000 t/y. Significant work, including a pilot plant, is required to develop GMODS for applications at an industrial scale.

Book Direct Conversion of Plutonium containing Materials to Borosilicate Glass for Storage Or Disposal

Download or read book Direct Conversion of Plutonium containing Materials to Borosilicate Glass for Storage Or Disposal written by and published by . This book was released on 1995 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A new process, the Glass Material Oxidation and Dissolution System (GMODS), has been invented for the direct conversion of plutonium metal, scrap, and residue into borosilicate glass. The glass should be acceptable for either the long-term storage or disposition of plutonium. Conversion of plutonium from complex chemical mixtures and variable geometries into homogeneous glass (1) simplifies safeguards and security; (2) creates a stable chemical form that meets health, safety, and environmental concerns; (3) provides an easy storage form; (4) may lower storage costs; and (5) allows for future disposition options. In the GMODS process, mixtures of metals, ceramics, organics, and amorphous solids containing plutonium are fed directly into a glass melter where they are directly converted to glass. Conventional glass melters can accept materials only in oxide form; thus, it is its ability to accept materials in multiple chemical forms that makes GMODS a unique glass making process. Initial proof-of-principle experiments have converted cerium (plutonium surrogate), uranium, stainless steel, aluminum, and other materials to glass. Significant technical uncertainties remain because of the early nature of process development.

Book Glass Material Oxidation and Dissolution System

Download or read book Glass Material Oxidation and Dissolution System written by and published by . This book was released on 1996 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt: The cold war and the development of nuclear energy have resulted in significant inventories of miscellaneous fissile materials (MFMs). MFMs include (1) plutonium scrap and residue, (2) miscellaneous spent nuclear fuel (SNF), (3) certain hot cell wastes, and (4) many one-of-a-kind materials. Major concerns associated with the long-term management of these materials include: safeguards and nonproliferation issues; health, environment, and safety concerns. waste management requirements; and high storage costs. These issues can be addressed by converting the MFMs to glass for secure, long-term storage or repository disposal; however, conventional glass-making processes require oxide-like feed materials. Converting MFMs to oxide-like materials with subsequent vitrification is a complex and expensive process. A new vitrification process has been invented, the Glass Material Oxidation and Dissolution System (GMODS), which directly converts metals, ceramics, and amorphous solids to glass; oxidizes organics with the residue converted to glass; and converts chlorides to borosilicate glass and a secondary sodium chloride (NaCl) stream. Laboratory work has demonstrated the conversion of cerium (a plutonium surrogate), uranium, Zircaloy, stainless steel, multiple oxides, and other materials to glass. However, significant work is required to develop GMODS further for applications at an industrial scale. If implemented, GMODS will provide a new approach to manage these materials.

Book Conversion of Plutonium Containing Materials Into Borosilicate Glass Using the Glass Material Oxidation and Dissolution System

Download or read book Conversion of Plutonium Containing Materials Into Borosilicate Glass Using the Glass Material Oxidation and Dissolution System written by C. W. Forsberg and published by . This book was released on 1996 with total page 37 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Radioactive Waste Management

Download or read book Radioactive Waste Management written by and published by . This book was released on 1996-05 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Conversion of Plutonium Scrap and Residue to Boroilicate Glass Using the GMODS Process

Download or read book Conversion of Plutonium Scrap and Residue to Boroilicate Glass Using the GMODS Process written by and published by . This book was released on 1995 with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plutonium scrap and residue represent major national and international concerns because (1) significant environmental, safety, and health (ES & H) problems have been identified with their storage; (2) all plutonium recovered from the black market in Europe has been from this category; (3) storage costs are high; and (4) safeguards are difficult. It is proposed to address these problems by conversion of plutonium scrap and residue to a CRACHIP (CRiticality, Aerosol, and CHemically Inert Plutonium) glass using the Glass Material Oxidation and Dissolution System (GMODS). CRACHIP refers to a set of requirements for plutonium storage forms that minimize ES & H concerns. The concept is several decades old. Conversion of plutonium from complex chemical mixtures and variable geometries into a certified, qualified, homogeneous CRACHIP glass creates a stable chemical form that minimizes ES & H risks, simplifies safeguards and security, provides an easy-to-store form, decreases storage costs, and allows for future disposition options. GMODS is a new process to directly convert metals, ceramics, and amorphous solids to glass; oxidize organics with the residue converted to glass; and convert chlorides to borosilicate glass and a secondary sodium chloride stream. Laboratory work has demonstrated the conversion of cerium (a plutonium surrogate), uranium (a plutonium surrogate), Zircaloy, stainless steel, and other materials to glass. GMODS is an enabling technology that creates new options. Conventional glassmaking processes require conversion of feeds to oxide-like forms before final conversion to glass. Such chemical conversion and separation processes are often complex and expensive.

Book Government Reports Announcements   Index

Download or read book Government Reports Announcements Index written by and published by . This book was released on 1996-09 with total page 1244 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Preliminary Process Simulation and Analysis of GMODS

Download or read book Preliminary Process Simulation and Analysis of GMODS written by and published by . This book was released on 1996 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: To address growing concerns in the areas of arms control, control of fissile materials, waste management, and environment and health, the US Department of Energy is studying and evaluating various options for the control and disposal of surplus fissile materials (SFMs). One of the options under consideration is the Glass Material Oxidation and Dissolution System (GMODS) which directly converts plutonium-bearing materials such as metals, ceramics, and organics into a durable-high-quality glass for long-term storage or a waste form for disposal. This study undertook the development of a computer simulation of the GMODS process using FLOW. That computer simulation was used to perform an assessment of how GMODS would handle the treatment of plutonium, rich scrap (RS) and lead scrap (LS), and identify critical process parameters. Among the key process parameters affecting the glass formation were processing temperatures, additives, and the effects of varying them on the final product. This assessment looked at the quantity of glass produced, the quality of the final glass form, and the effect of blending different groups of the feed streams on the glass produced. The model also provided a way to study the current process assumptions and determine in which areas more experimental studies are required. The simulation showed that the glass chemistry postulated in the models is workable. It is expected that the glass chemistry assumed during the modeling process can be verified by the results of the laboratory experiments that are currently being conducted relating to the GMODS process. Further waste characterization, especially of the SFM waste streams not studied in this report, will provide more nearly accurate results and give a more detailed evaluation of the GMODS process.

Book Energy Research Abstracts

Download or read book Energy Research Abstracts written by and published by . This book was released on 1995 with total page 832 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiannual, with semiannual and annual indexes. References to all scientific and technical literature coming from DOE, its laboratories, energy centers, and contractors. Includes all works deriving from DOE, other related government-sponsored information, and foreign nonnuclear information. Arranged under 39 categories, e.g., Biomedical sciences, basic studies; Biomedical sciences, applied studies; Health and safety; and Fusion energy. Entry gives bibliographical information and abstract. Corporate, author, subject, report number indexes.

Book Plutonium Dioxide Dissolution in Glass

Download or read book Plutonium Dioxide Dissolution in Glass written by John David Vienna and published by . This book was released on 1996 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book VARIABILITY STUDY TO DETERMINE THE SOLUBILITY OF IMPURITIES IN PLUTONIUM BEARING  LANTHANIDE BOROSILICATE GLASS

Download or read book VARIABILITY STUDY TO DETERMINE THE SOLUBILITY OF IMPURITIES IN PLUTONIUM BEARING LANTHANIDE BOROSILICATE GLASS written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This study focuses on the development of a compositional envelope that describes the retention of various impurities in lanthanide borosilicate (LaBS) glass for vitrification and immobilization of excess, defense-related plutonium. A limited amount of impurity data for the various plutonium sources is available and projections were made through analysis of the available information. These projections were used to define types and concentrations of impurities in the LaBS glass compositions to be fabricated and tested. Sixty surrogate glass compositions were developed through a statistically designed approach to cover the anticipated ranges of concentrations for several impurity species expected in the plutonium feeds. An additional four glass compositions containing actual plutonium oxide were selected based on their targeted concentrations of metals and anions. The glasses were fabricated and characterized in the laboratory and shielded cells facility to determine the degree of retention of the impurity components, the impact of the impurities on the durability of each glass, and the degree of crystallization that occurred, both upon quenching and slow cooling. Overall, the LaBS glass system appears to be very tolerant of most of the impurity types and concentrations projected in the plutonium waste stream. For the surrogate glasses, the measured CuO, Ga2O3, Na2O, NiO, and Ta2O5 concentrations fell very close to their target values across the ranges of concentrations targeted in this study for each of these components. The measured CaO and PbO concentrations were consistently higher than the targeted values. The measured Cr2O3 and Fe2O3 concentrations were very close to the targets except for the one highest targeted value for each of these components. A solubility limit may have been approached in this glass system for K2O and MgO. The measured Cl−, F−, SeO2 and SO42− concentrations were well below their target values for all of the study glasses. This is likely due to volatilization of these species during melting of the glass batch. Note that the degree of volatilization that occurred in this crucible-scale study may differ from the full-scale melter. The measured HfO2 concentrations were below their target values for all of the surrogate glasses. It is likely that for HfO2, the solubility limit in the glass was exceeded and some of the HfO2 batch material remained in the bottom of the crucibles after pouring the glasses. X-ray diffraction and scanning electron microscopy (SEM) results indicated that some crystalline HfO2 remained in some of the surrogate glasses with the lowest concentration of impurities. No other crystalline phases were identified. The Product Consistency Test (PCT) results showed that all 60 of the surrogate glass compositions tested were very durable, regardless of thermal history, with the highest normalized release for boron being 0.041 g/L. The pH of the leachate solutions was generally lower than that of conventional waste glasses due to the lack of alkali in the LaBS glass, which likely impacted the PCT results. The normalized release rates for the elements measured were generally too small to attempt to correlate the results with the compositions of the test glasses. The Toxicity Characteristic Leaching Procedure results showed that no hazardous metals were leached from the surrogate glasses in any measurable concentration. A plutonium-containing crystalline phase with a cross-shaped morphology was identified via SEM in the glasses fabricated with plutonium oxide. This phase was identified in a previous study of plutonium-bearing LaBS glasses and may provide an opportunity to intentionally crystallize some of the plutonium oxide into a highly insoluble form with an intrinsic neutron absorber. Additional work is necessary to better characterize the influence that this phase has on durability of the glass. The PCT results for the plutonium-containing LaBS glasses with impurities were similar to previous tests conducted on PuO2-containing glasses without impurities added. The highest normalized release for boron was 0.02 g/L, which bounded the highest normalized release for plutonium of 0.01 g/L.

Book Dissolution Studies of Plutonium Oxide in LaBS Glass

Download or read book Dissolution Studies of Plutonium Oxide in LaBS Glass written by and published by . This book was released on 1997 with total page 6 pages. Available in PDF, EPUB and Kindle. Book excerpt: As part of international agreement between the United States and Russia, a significant amount of plutonium requires disposition. One of the disposition paths is to immobilize it and dispose of it in a geological repository. The two favored immobilization forms are glass and ceramic. The plutonium, as an oxide, would be reacted with the glass or ceramic to form a homogeneousmaterial. The resulting solid product would then be encased in High-Level Waste (1-ILW)glass for the can-in-canister option. The HLW glass gives a radiation barrier to increase proliferation resistance. The glass canister would then be disposed of by geological emplacement. This paper discusses how glass meets two criteria: the condition of significant actinide volubility, and That the PuO2 feed should be incorporated into the matrix without significant amount of unreacted material.

Book Development of the Plutonium Oxide Vitrification System

Download or read book Development of the Plutonium Oxide Vitrification System written by and published by . This book was released on 1998 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt: Repository disposal of plutonium in a suitable, immobilized form is being considered as one option for the disposition of surplus weapons-usable plutonium. Accelerated development efforts were completed in 1997 on two potential immobilization forms to facilitate downselection to one form for continued development. The two forms studied were a crystalline ceramic based on Synroc technology and a lanthanide borosilicate (LaBS) glass. As part of the glass development program, melter design activities and component testing were completed to demonstrate the feasibility of using glass as an immobilization medium. A prototypical melter was designed and built in 1997. The melter vessel and drain tube were constructed of a Pt/Rh alloy. Separate induction systems were used to heat the vessel and drain tube. A Pt/Rh stirrer was incorporated into the design to facilitate homogenization of the melt. Integrated powder feeding and off-gas systems completed the overall design. Concurrent with the design efforts, testing was conducted using a plutonium surrogate LaBS composition in an existing (near-scale) melter to demonstrate the feasibility of processing the LaBS glass on a production scale. Additionally, the drain tube configuration was successfully tested using a plutonium surrogate LaBS glass.

Book Pu Glass Fabrication and Product Consistency Testing

Download or read book Pu Glass Fabrication and Product Consistency Testing written by James Marra and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The DOE/EM plans to conduct the Plutonium Vitrification Project at the Savannah River Site (SRS). An important part of this project is to reduce the attractiveness of the plutonium by fabricating a plutonium glass form and immobilizing the Pu form within the high level waste (HLW) glass prepared in the Defense Waste Processing Facility (DWPF). This requires that a project schedule that is consistent with EM plans for DWPF and cleanup of the SRS be developed. Critical inputs to key decisions in the vitrification project schedule are near-term data that will increase confidence that lanthanide borosilicate (LaBS) glass product is suitable for disposal in the Yucca Mountain Repository. A workshop was held on April 28, 2005 at Bechtel SAIC Company facility in Las Vegas, NV to define the near term data needs. Dissolution rate data and the fate of plutonium oxide and the neutron absorbers during the dissolution process were defined as key data needs. A suite of short-term tests were defined at the workshop to obtain the needed data. The objectives of these short-term tests are to obtain data that can be used to show that the dissolution rate of a LaBS glass is acceptable and to show that the extent of Pu separation from neutron absorbers, as the glass degrades and dissolves, is not likely to lead to criticality concerns. An additional data need was identified regarding the degree of macroscopic cracking that occurs during processing of the Pu glass waste form and subsequent pouring of HLW glass in the DWPF. A final need to evaluate new frit formulations that may increase the durability of the plutonium glass and/or decrease the degree to which neutron absorbers separate from the plutonium during dissolution was identified. This task plan covers testing to support a near term data need regarding glass dissolution performance. Separate task plans will be developed for testing to address the degree of macroscopic cracking and the development of alternative frit formulations. The Product Consistency Test (PCT) was identified as a means to provide some of the near term performance data. The PCT is a static test method in which known masses of crushed glass and demineralized water are reacted for a desired duration [1]. There are two reasons to perform the PCT. The first is that the results are used as a measure of acceptance in the Waste Acceptance Product Specifications Document (WAPS) [2]. The second is the need for long-term static test results that can be used to verify the applicability of the degradation model. Thus, the primary focus will be on the use of the PCT Method B (PCT-B) to study the formation and stability of colloids and to study alteration phases formed on the glass surface. The standard 7-day PCT in demineralized water (PCT-A) will be included to demonstrate compliance with the waste acceptance criterion and determine the value of the k{sub E} rate parameter for comparison with the Defense HLW Glass Degradation Model [3].