EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Differential Equations As Models In Science And Engineering

Download or read book Differential Equations As Models In Science And Engineering written by Gregory Richard Baker and published by World Scientific Publishing Company. This book was released on 2016-07-25 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook develops a coherent view of differential equations by progressing through a series of typical examples in science and engineering that arise as mathematical models. All steps of the modeling process are covered: formulation of a mathematical model; the development and use of mathematical concepts that lead to constructive solutions; validation of the solutions; and consideration of the consequences. The volume engages students in thinking mathematically, while emphasizing the power and relevance of mathematics in science and engineering. There are just a few guidelines that bring coherence to the construction of solutions as the book progresses through ordinary to partial differential equations using examples from mixing, electric circuits, chemical reactions and transport processes, among others. The development of differential equations as mathematical models and the construction of their solution is placed center stage in this volume.

Book Differential Equations as Models in Science and Engineering

Download or read book Differential Equations as Models in Science and Engineering written by Gregory Baker and published by . This book was released on 2013 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Differential Equations Models Science

Download or read book Differential Equations Models Science written by GREGORY and published by . This book was released on 2016-09 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mathematical Modeling in Science and Engineering

Download or read book Mathematical Modeling in Science and Engineering written by Ismael Herrera and published by John Wiley & Sons. This book was released on 2012-03-19 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: A powerful, unified approach to mathematical and computational modeling in science and engineering Mathematical and computational modeling makes it possible to predict the behavior of a broad range of systems across a broad range of disciplines. This text guides students and professionals through the axiomatic approach, a powerful method that will enable them to easily master the principle types of mathematical and computational models used in engineering and science. Readers will discover that this axiomatic approach not only enables them to systematically construct effective models, it also enables them to apply these models to any macroscopic physical system. Mathematical Modeling in Science and Engineering focuses on models in which the processes to be modeled are expressed as systems of partial differential equations. It begins with an introductory discussion of the axiomatic formulation of basic models, setting the foundation for further topics such as: Mechanics of classical and non-classical continuous systems Solute transport by a free fluid Flow of a fluid in a porous medium Multiphase systems Enhanced oil recovery Fluid mechanics Throughout the text, diagrams are provided to help readers visualize and better understand complex mathematical concepts. A set of exercises at the end of each chapter enables readers to put their new modeling skills into practice. There is also a bibliography in each chapter to facilitate further investigation of individual topics. Mathematical Modeling in Science and Engineering is ideal for both students and professionals across the many disciplines of science and engineering that depend on mathematical and computational modeling to predict and understand complex systems.

Book Handbook of Linear Partial Differential Equations for Engineers and Scientists

Download or read book Handbook of Linear Partial Differential Equations for Engineers and Scientists written by Andrei D. Polyanin and published by CRC Press. This book was released on 2001-11-28 with total page 800 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following in the footsteps of the authors' bestselling Handbook of Integral Equations and Handbook of Exact Solutions for Ordinary Differential Equations, this handbook presents brief formulations and exact solutions for more than 2,200 equations and problems in science and engineering. Parabolic, hyperbolic, and elliptic equations with

Book The Art of Modeling in Science and Engineering with Mathematica  Second Edition

Download or read book The Art of Modeling in Science and Engineering with Mathematica Second Edition written by Diran Basmadjian and published by CRC Press. This book was released on 2006-08-18 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thoroughly revised and updated, The Art of Modeling in Science and Engineering with Mathematica®, Second Edition explores the mathematical tools and procedures used in modeling based on the laws of conservation of mass, energy, momentum, and electrical charge. The authors have culled and consolidated the best from the first edition and expanded the range of applied examples to reach a wider audience. The text proceeds, in measured steps, from simple models of real-world problems at the algebraic and ordinary differential equations (ODE) levels to more sophisticated models requiring partial differential equations. The traditional solution methods are supplemented with Mathematica , which is used throughout the text to arrive at solutions for many of the problems presented. The text is enlivened with a host of illustrations and practice problems drawn from classical and contemporary sources. They range from Thomson’s famous experiment to determine e/m and Euler’s model for the buckling of a strut to an analysis of the propagation of emissions and the performance of wind turbines. The mathematical tools required are first explained in separate chapters and then carried along throughout the text to solve and analyze the models. Commentaries at the end of each illustration draw attention to the pitfalls to be avoided and, perhaps most important, alert the reader to unexpected results that defy conventional wisdom. These features and more make the book the perfect tool for resolving three common difficulties: the proper choice of model, the absence of precise solutions, and the need to make suitable simplifying assumptions and approximations. The book covers a wide range of physical processes and phenomena drawn from various disciplines and clearly illuminates the link between the physical system being modeled and the mathematical expression that results.

Book Non Local Partial Differential Equations for Engineering and Biology

Download or read book Non Local Partial Differential Equations for Engineering and Biology written by Nikos I. Kavallaris and published by Springer. This book was released on 2017-11-28 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents new developments in non-local mathematical modeling and mathematical analysis on the behavior of solutions with novel technical tools. Theoretical backgrounds in mechanics, thermo-dynamics, game theory, and theoretical biology are examined in details. It starts off with a review and summary of the basic ideas of mathematical modeling frequently used in the sciences and engineering. The authors then employ a number of models in bio-science and material science to demonstrate applications, and provide recent advanced studies, both on deterministic non-local partial differential equations and on some of their stochastic counterparts used in engineering. Mathematical models applied in engineering, chemistry, and biology are subject to conservation laws. For instance, decrease or increase in thermodynamic quantities and non-local partial differential equations, associated with the conserved physical quantities as parameters. These present novel mathematical objects are engaged with rich mathematical structures, in accordance with the interactions between species or individuals, self-organization, pattern formation, hysteresis. These models are based on various laws of physics, such as mechanics of continuum, electro-magnetic theory, and thermodynamics. This is why many areas of mathematics, calculus of variation, dynamical systems, integrable systems, blow-up analysis, and energy methods are indispensable in understanding and analyzing these phenomena. This book aims for researchers and upper grade students in mathematics, engineering, physics, economics, and biology.

Book Differential Equations

Download or read book Differential Equations written by Christian Constanda and published by Springer. This book was released on 2017-03-14 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is designed with the needs of today’s student in mind. It is the ideal textbook for a first course in elementary differential equations for future engineers and scientists, including mathematicians. This book is accessible to anyone who has a basic knowledge of precalculus algebra and differential and integral calculus. Its carefully crafted text adopts a concise, simple, no-frills approach to differential equations, which helps students acquire a solid experience in many classical solution techniques. With a lighter accent on the physical interpretation of the results, a more manageable page count than comparable texts, a highly readable style, and over 1000 exercises designed to be solved without a calculating device, this book emphasizes the understanding and practice of essential topics in a succinct yet fully rigorous fashion. Apart from several other enhancements, the second edition contains one new chapter on numerical methods of solution. The book formally splits the "pure" and "applied" parts of the contents by placing the discussion of selected mathematical models in separate chapters. At the end of most of the 246 worked examples, the author provides the commands in Mathematica® for verifying the results. The book can be used independently by the average student to learn the fundamentals of the subject, while those interested in pursuing more advanced material can regard it as an easily taken first step on the way to the next level. Additionally, practitioners who encounter differential equations in their professional work will find this text to be a convenient source of reference.

Book A Compendium of Partial Differential Equation Models

Download or read book A Compendium of Partial Differential Equation Models written by William E. Schiesser and published by Cambridge University Press. This book was released on 2009-03-16 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents numerical methods and computer code in Matlab for the solution of ODEs and PDEs with detailed line-by-line discussion.

Book A First Course in Differential Equations  Modeling  and Simulation

Download or read book A First Course in Differential Equations Modeling and Simulation written by Carlos A. Smith and published by CRC Press. This book was released on 2011-05-18 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasizing a practical approach for engineers and scientists, A First Course in Differential Equations, Modeling, and Simulation avoids overly theoretical explanations and shows readers how differential equations arise from applying basic physical principles and experimental observations to engineering systems. It also covers classical methods for

Book Mathematical Modeling in Science and Engineering

Download or read book Mathematical Modeling in Science and Engineering written by Ismael Herrera and published by Wiley. This book was released on 2012-02-28 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: A powerful, unified approach to mathematical and computational modeling in science and engineering Mathematical and computational modeling makes it possible to predict the behavior of a broad range of systems across a broad range of disciplines. This text guides students and professionals through the axiomatic approach, a powerful method that will enable them to easily master the principle types of mathematical and computational models used in engineering and science. Readers will discover that this axiomatic approach not only enables them to systematically construct effective models.

Book Nonlinear Partial Differential Equations for Scientists and Engineers

Download or read book Nonlinear Partial Differential Equations for Scientists and Engineers written by Lokenath Debnath and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: This expanded and revised second edition is a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied applications. Building upon the successful material of the first book, this edition contains updated modern examples and applications from diverse fields. Methods and properties of solutions, along with their physical significance, help make the book more useful for a diverse readership. The book is an exceptionally complete text/reference for graduates, researchers, and professionals in mathematics, physics, and engineering.

Book The Art of Modeling in Science and Engineering with Mathematica

Download or read book The Art of Modeling in Science and Engineering with Mathematica written by Diran Basmadjian and published by CRC Press. This book was released on 2019-07-17 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling is practiced in engineering and all physical sciences. Many specialized texts exist - written at a high level - that cover this subject. However, students and even professionals often experience difficulties in setting up and solving even the simplest of models. This can be attributed to three difficulties: the proper choice of model, the absence of precise solutions, and the necessity to make suitable simplifying assumptions and approximations. Overcoming these difficulties is the focus of The Art of Modeling in Science and Engineering. The text is designed for advanced undergraduate and graduate students and practicing professionals in the sciences and engineering with an interest in Modeling based on Mass, Energy and Momentum or Force Balances. The book covers a wide range of physical processes and phenomena drawn from chemical, mechanical, civil, environmental sciences and bio- sciences. A separate section is devoted to "real World" industrial problems. The author explains how to choose the simplest model, obtain an appropriate solution to the problem and make simplifying assumptions/approximations.

Book Integral Methods in Science and Engineering

Download or read book Integral Methods in Science and Engineering written by Christian Constanda and published by CRC Press. This book was released on 1997-10-08 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on proceedings of the International Conference on Integral Methods in Science and Engineering, this collection of papers addresses the solution of mathematical problems by integral methods in conjunction with approximation schemes from various physical domains. Topics and applications include: wavelet expansions, reaction-diffusion systems, variational methods, fracture theory, boundary value problems at resonance, micromechanics, fluid mechanics, combustion problems, nonlinear problems, elasticity theory, and plates and shells.

Book Scaling of Differential Equations

Download or read book Scaling of Differential Equations written by Hans Petter Langtangen and published by Springer. This book was released on 2016-06-15 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book serves both as a reference for various scaled models with corresponding dimensionless numbers, and as a resource for learning the art of scaling. A special feature of the book is the emphasis on how to create software for scaled models, based on existing software for unscaled models. Scaling (or non-dimensionalization) is a mathematical technique that greatly simplifies the setting of input parameters in numerical simulations. Moreover, scaling enhances the understanding of how different physical processes interact in a differential equation model. Compared to the existing literature, where the topic of scaling is frequently encountered, but very often in only a brief and shallow setting, the present book gives much more thorough explanations of how to reason about finding the right scales. This process is highly problem dependent, and therefore the book features a lot of worked examples, from very simple ODEs to systems of PDEs, especially from fluid mechanics. The text is easily accessible and example-driven. The first part on ODEs fits even a lower undergraduate level, while the most advanced multiphysics fluid mechanics examples target the graduate level. The scientific literature is full of scaled models, but in most of the cases, the scales are just stated without thorough mathematical reasoning. This book explains how the scales are found mathematically. This book will be a valuable read for anyone doing numerical simulations based on ordinary or partial differential equations.

Book A First Course in Differential Equations  Modeling  and Simulation

Download or read book A First Course in Differential Equations Modeling and Simulation written by Carlos A. Smith and published by CRC Press. This book was released on 2011-05-18 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasizing a practical approach for engineers and scientists, A First Course in Differential Equations, Modeling, and Simulation avoids overly theoretical explanations and shows readers how differential equations arise from applying basic physical principles and experimental observations to engineering systems. It also covers classical methods for obtaining the analytical solution of differential equations and Laplace transforms. In addition, the authors discuss how these equations describe mathematical systems and how to use software to solve sets of equations where analytical solutions cannot be obtained. Using simple physics, the book introduces dynamic modeling, the definition of differential equations, two simple methods for obtaining their analytical solution, and a method to follow when modeling. It then presents classical methods for solving differential equations, discusses the engineering importance of the roots of a characteristic equation, and describes the response of first- and second-order differential equations. A study of the Laplace transform method follows with explanations of the transfer function and the power of Laplace transform for obtaining the analytical solution of coupled differential equations. The next several chapters present the modeling of translational and rotational mechanical systems, fluid systems, thermal systems, and electrical systems. The final chapter explores many simulation examples using a typical software package for the solution of the models developed in previous chapters. Providing the necessary tools to apply differential equations in engineering and science, this text helps readers understand differential equations, their meaning, and their analytical and computer solutions. It illustrates how and where differential equations develop, how they describe engineering systems, how to obtain the analytical solution, and how to use software to simulate the systems.

Book Numerical Modeling of Coupled Phenomena in Science and Engineering

Download or read book Numerical Modeling of Coupled Phenomena in Science and Engineering written by Mario César Suárez Arriaga and published by CRC Press. This book was released on 2008-12-01 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics is a universal language. Differential equations, mathematical modeling, numerical methods and computation form the underlying infrastructure of engineering and the sciences. In this context mathematical modeling is a very powerful tool for studying engineering problems, natural systems and human society. This interdisciplinary book cont