Download or read book Algorithmic Foundations of Robotics V written by Jean-Daniel Boissonnat and published by Springer Science & Business Media. This book was released on 2003-09-11 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: Selected contributions to the Workshop WAFR 2002, held December 15-17, 2002, Nice, France. This fifth biannual Workshop on Algorithmic Foundations of Robotics focuses on algorithmic issues related to robotics and automation. The design and analysis of robot algorithms raises fundamental questions in computer science, computational geometry, mechanical modeling, operations research, control theory, and associated fields. The highly selective program highlights significant new results such as algorithmic models and complexity bounds. The validation of algorithms, design concepts, or techniques is the common thread running through this focused collection.
Download or read book Advanced planning control and signal processing methods and applications in robotic systems volume II written by Zhan Li and published by Frontiers Media SA. This book was released on 2023-05-25 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Geometric and Numerical Foundations of Movements written by Jean-Paul Laumond and published by Springer. This book was released on 2017-05-02 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims at gathering roboticists, control theorists, neuroscientists, and mathematicians, in order to promote a multidisciplinary research on movement analysis. It follows the workshop “ Geometric and Numerical Foundations of Movements ” held at LAAS-CNRS in Toulouse in November 2015[1]. Its objective is to lay the foundations for a mutual understanding that is essential for synergetic development in motion research. In particular, the book promotes applications to robotics --and control in general-- of new optimization techniques based on recent results from real algebraic geometry.
Download or read book Motion Planning in Dynamic Environments written by Kikuo Fujimura and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer Science Workbench is a monograph series which will provide you with an in-depth working knowledge of current developments in computer technology. Every volume in this series will deal with a topic of importance in computer science and elaborate on how you yourself can build systems related to the main theme. You will be able to develop a variety of systems, including computer software tools, computer graphics, computer animation, database management systems, and computer-aided design and manufacturing systems. Computer Science Workbench represents an important new contribution in the field of practical computer technology. TOSIYASU L. KUNII To my parents Kenjiro and Nori Fujimura Preface Motion planning is an area in robotics that has received much attention recently. Much of the past research focuses on static environments - various methods have been developed and their characteristics have been well investigated. Although it is essential for autonomous intelligent robots to be able to navigate within dynamic worlds, the problem of motion planning in dynamic domains is relatively little understood compared with static problems.
Download or read book Learning for Adaptive and Reactive Robot Control written by Aude Billard and published by MIT Press. This book was released on 2022-02-08 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods by which robots can learn control laws that enable real-time reactivity using dynamical systems; with applications and exercises. This book presents a wealth of machine learning techniques to make the control of robots more flexible and safe when interacting with humans. It introduces a set of control laws that enable reactivity using dynamical systems, a widely used method for solving motion-planning problems in robotics. These control approaches can replan in milliseconds to adapt to new environmental constraints and offer safe and compliant control of forces in contact. The techniques offer theoretical advantages, including convergence to a goal, non-penetration of obstacles, and passivity. The coverage of learning begins with low-level control parameters and progresses to higher-level competencies composed of combinations of skills. Learning for Adaptive and Reactive Robot Control is designed for graduate-level courses in robotics, with chapters that proceed from fundamentals to more advanced content. Techniques covered include learning from demonstration, optimization, and reinforcement learning, and using dynamical systems in learning control laws, trajectory planning, and methods for compliant and force control . Features for teaching in each chapter: applications, which range from arm manipulators to whole-body control of humanoid robots; pencil-and-paper and programming exercises; lecture videos, slides, and MATLAB code examples available on the author’s website . an eTextbook platform website offering protected material[EPS2] for instructors including solutions.
Download or read book Advances in Human Factors in Simulation and Modeling written by Daniel N. Cassenti and published by Springer. This book was released on 2017-06-13 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on computational modeling and simulation research that advances the current state-of-the-art regarding human factors in simulation and applied digital human modeling. It reports on cutting-edge simulators such as virtual and augmented reality, on multisensory environments, and on modeling and simulation methods used in various applications, such as surgery, military operations, occupational safety, sports training, education, transportation and robotics. Based on the AHFE 2017 International Conference on Human Factors in Simulation and Modeling, held on July 17–21, 2017, in Los Angeles, California, USA, the book is intended as a timely reference guide for researchers and practitioners developing new modeling and simulation tools for analyzing or improving human performance. It also offers a unique resource for modelers seeking insights into human factors research and more feasible and reliable computational tools to foster advances in this exciting research field.
Download or read book Kinematic Control of Redundant Robot Arms Using Neural Networks written by Shuai Li and published by John Wiley & Sons. This book was released on 2019-02-11 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents pioneering and comprehensive work on engaging movement in robotic arms, with a specific focus on neural networks This book presents and investigates different methods and schemes for the control of robotic arms whilst exploring the field from all angles. On a more specific level, it deals with the dynamic-neural-network based kinematic control of redundant robot arms by using theoretical tools and simulations. Kinematic Control of Redundant Robot Arms Using Neural Networks is divided into three parts: Neural Networks for Serial Robot Arm Control; Neural Networks for Parallel Robot Control; and Neural Networks for Cooperative Control. The book starts by covering zeroing neural networks for control, and follows up with chapters on adaptive dynamic programming neural networks for control; projection neural networks for robot arm control; and neural learning and control co-design for robot arm control. Next, it looks at robust neural controller design for robot arm control and teaches readers how to use neural networks to avoid robot singularity. It then instructs on neural network based Stewart platform control and neural network based learning and control co-design for Stewart platform control. The book finishes with a section on zeroing neural networks for robot arm motion generation. Provides comprehensive understanding on robot arm control aided with neural networks Presents neural network-based control techniques for single robot arms, parallel robot arms (Stewart platforms), and cooperative robot arms Provides a comparison of, and the advantages of, using neural networks for control purposes rather than traditional control based methods Includes simulation and modelling tasks (e.g., MATLAB) for onward application for research and engineering development By focusing on robot arm control aided by neural networks whilst examining central topics surrounding the field, Kinematic Control of Redundant Robot Arms Using Neural Networks is an excellent book for graduate students and academic and industrial researchers studying neural dynamics, neural networks, analog and digital circuits, mechatronics, and mechanical engineering.
Download or read book A Mathematical Introduction to Robotic Manipulation written by Richard M. Murray and published by CRC Press. This book was released on 2017-12-14 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Mathematical Introduction to Robotic Manipulation presents a mathematical formulation of the kinematics, dynamics, and control of robot manipulators. It uses an elegant set of mathematical tools that emphasizes the geometry of robot motion and allows a large class of robotic manipulation problems to be analyzed within a unified framework. The foundation of the book is a derivation of robot kinematics using the product of the exponentials formula. The authors explore the kinematics of open-chain manipulators and multifingered robot hands, present an analysis of the dynamics and control of robot systems, discuss the specification and control of internal forces and internal motions, and address the implications of the nonholonomic nature of rolling contact are addressed, as well. The wealth of information, numerous examples, and exercises make A Mathematical Introduction to Robotic Manipulation valuable as both a reference for robotics researchers and a text for students in advanced robotics courses.
Download or read book Modeling Identification and Control of Robots written by W. Khalil and published by Butterworth-Heinemann. This book was released on 2004-07-01 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by two of Europe's leading robotics experts, this book provides the tools for a unified approach to the modelling of robotic manipulators, whatever their mechanical structure. No other publication covers the three fundamental issues of robotics: modelling, identification and control. It covers the development of various mathematical models required for the control and simulation of robots.·World class authority·Unique range of coverage not available in any other book·Provides a complete course on robotic control at an undergraduate and graduate level
Download or read book Vehicle Manipulator Systems written by Pål Johan From and published by Springer Science & Business Media. This book was released on 2013-10-02 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Furthering the aim of reducing human exposure to hazardous environments, this monograph presents a detailed study of the modeling and control of vehicle-manipulator systems. The text shows how complex interactions can be performed at remote locations using systems that combine the manipulability of robotic manipulators with the ability of mobile robots to locomote over large areas. The first part studies the kinematics and dynamics of rigid bodies and standard robotic manipulators and can be used as an introduction to robotics focussing on robust mathematical modeling. The monograph then moves on to study vehicle-manipulator systems in great detail with emphasis on combining two different configuration spaces in a mathematically sound way. Robustness of these systems is extremely important and Modeling and Control of Vehicle-manipulator Systems effectively represents the dynamic equations using a mathematically robust framework. Several tools from Lie theory and differential geometry are used to obtain globally valid representations of the dynamic equations of vehicle-manipulator systems. The specific characteristics of several different types of vehicle-manipulator systems are included and the various application areas of these systems are discussed in detail. For underwater robots buoyancy and gravity, drag forces, added mass properties, and ocean currents are considered. For space robotics the effects of free fall environments and the strong dynamic coupling between the spacecraft and the manipulator are discussed. For wheeled robots wheel kinematics and non-holonomic motion is treated, and finally the inertial forces are included for robots mounted on a forced moving base. Modeling and Control of Vehicle-manipulator Systems will be of interest to researchers and engineers studying and working on many applications of robotics: underwater, space, personal assistance, and mobile manipulation in general, all of which have similarities in the equations required for modeling and control.
Download or read book On motion planning and control for truck and trailer systems written by Oskar Ljungqvist and published by Linköping University Electronic Press. This book was released on 2019-01-22 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last decades, improved sensor and hardware technologies as well as new methods and algorithms have made self-driving vehicles a realistic possibility in the near future. Thanks to this technology enhancement, many leading automotive and technology companies have turned their attention towards developing advanced driver assistance systems (ADAS) and self-driving vehicles. Autonomous vehicles are expected to have their first big impact in closed areas, such as mines, harbors and loading/offloading sites. In such areas, the legal requirements are less restrictive and the surrounding environment is more controlled and predictable compared to urban areas. Expected positive outcomes include increased productivity and safety, reduced emissions and the possibility to relieve the human from performing complex or dangerous tasks. Within these sites, different truck and trailer systems are used to transport materials. These systems are composed of several interconnected modules, and are thus large and highly unstable while reversing. This thesis addresses the problem of designing efficient motion planning and feedback control frameworks for such systems. First, a cascade controller for a reversing truck with a dolly-steered trailer is presented. The unstable modes of the system is stabilized around circular equilibrium configurations using a gain-scheduled linear quadratic (LQ) controller together with a higher-level pure pursuit controller to enable path following of piecewise linear reference paths. The cascade controller is then used within a rapidly-exploring random tree (RRT) framework and the complete motion planning and control framework is demonstrated on a small-scale test vehicle. Second, a path following controller for a reversing truck with a dolly-steered trailer is proposed for the case when the obtained motion plan is kinematically feasible. The control errors of the system are modeled in terms of their deviation from the nominal path and a stabilizing LQ controller with feedforward action is designed based on the linearization of the control error model. Stability of the closed-loop system is proven by combining global optimization, theory from linear differential inclusions and linear matrix inequality techniques. Third, a systematic framework is presented for analyzing stability of the closed-loop system consisting of a controlled vehicle and a feedback controller, executing a motion plan computed by a lattice planner. When this motion planner is considered, it is shown that the closed-loop system can be modeled as a nonlinear hybrid system. Based on this, a novel method is presented for analyzing the behavior of the tracking error, how to design the feedback controller and how to potentially impose constraints on the motion planner in order to guarantee that the tracking error is bounded and decays towards zero. Fourth, a complete motion planning and control solution for a truck with a dolly-steered trailer is presented. A lattice-based motion planner is proposed, where a novel parametrization of the vehicle’s state-space is proposed to improve online planning time. A time-symmetry result is established that enhance the numerical stability of the numerical optimal control solver used for generating the motion primitives. Moreover, a nonlinear observer for state estimation is developed which only utilizes information from sensors that are mounted on the truck, making the system independent of additional trailer sensors. The proposed framework is implemented on a full-scale truck with a dolly-steered trailer and results from a series of field experiments are presented.
Download or read book Intrinsically Motivated Learning in Natural and Artificial Systems written by Gianluca Baldassarre and published by Springer Science & Business Media. This book was released on 2013-03-29 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: It has become clear to researchers in robotics and adaptive behaviour that current approaches are yielding systems with limited autonomy and capacity for self-improvement. To learn autonomously and in a cumulative fashion is one of the hallmarks of intelligence, and we know that higher mammals engage in exploratory activities that are not directed to pursue goals of immediate relevance for survival and reproduction but are instead driven by intrinsic motivations such as curiosity, interest in novel stimuli or surprising events, and interest in learning new behaviours. The adaptive value of such intrinsically motivated activities lies in the fact that they allow the cumulative acquisition of knowledge and skills that can be used later to accomplish fitness-enhancing goals. Intrinsic motivations continue during adulthood, and in humans they underlie lifelong learning, artistic creativity, and scientific discovery, while they are also the basis for processes that strongly affect human well-being, such as the sense of competence, self-determination, and self-esteem. This book has two aims: to present the state of the art in research on intrinsically motivated learning, and to identify the related scientific and technological open challenges and most promising research directions. The book introduces the concept of intrinsic motivation in artificial systems, reviews the relevant literature, offers insights from the neural and behavioural sciences, and presents novel tools for research. The book is organized into six parts: the chapters in Part I give general overviews on the concept of intrinsic motivations, their function, and possible mechanisms for implementing them; Parts II, III, and IV focus on three classes of intrinsic motivation mechanisms, those based on predictors, on novelty, and on competence; Part V discusses mechanisms that are complementary to intrinsic motivations; and Part VI introduces tools and experimental frameworks for investigating intrinsic motivations. The contributing authors are among the pioneers carrying out fundamental work on this topic, drawn from related disciplines such as artificial intelligence, robotics, artificial life, evolution, machine learning, developmental psychology, cognitive science, and neuroscience. The book will be of value to graduate students and academic researchers in these domains, and to engineers engaged with the design of autonomous, adaptive robots. The contributing authors are among the pioneers carrying out fundamental work on this topic, drawn from related disciplines such as artificial intelligence, robotics, artificial life, evolution, machine learning, developmental psychology, cognitive science, and neuroscience. The book will be of value to graduate students and academic researchers in these domains, and to engineers engaged with the design of autonomous, adaptive robots.
Download or read book An Algorithmic Perspective on Imitation Learning written by Takayuki Osa and published by . This book was released on 2018-03-27 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Familiarizes machine learning experts with imitation learning, statistical supervised learning theory, and reinforcement learning. It also roboticists and experts in applied artificial intelligence with a broader appreciation for the frameworks and tools available for imitation learning.
Download or read book Motion Planning for Humanoid Robots written by Kensuke Harada and published by Springer Science & Business Media. This book was released on 2010-08-12 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research on humanoid robots has been mostly with the aim of developing robots that can replace humans in the performance of certain tasks. Motion planning for these robots can be quite difficult, due to their complex kinematics, dynamics and environment. It is consequently one of the key research topics in humanoid robotics research and the last few years have witnessed considerable progress in the field. Motion Planning for Humanoid Robots surveys the remarkable recent advancement in both the theoretical and the practical aspects of humanoid motion planning. Various motion planning frameworks are presented in Motion Planning for Humanoid Robots, including one for skill coordination and learning, and one for manipulating and grasping tasks. The problem of planning sequences of contacts that support acyclic motion in a highly constrained environment is addressed and a motion planner that enables a humanoid robot to push an object to a desired location on a cluttered table is described. The main areas of interest include: • whole body motion planning, • task planning, • biped gait planning, and • sensor feedback for motion planning. Torque-level control of multi-contact behavior, autonomous manipulation of moving obstacles, and movement control and planning architecture are also covered. Motion Planning for Humanoid Robots will help readers to understand the current research on humanoid motion planning. It is written for industrial engineers, advanced undergraduate and postgraduate students.
Download or read book Control Problems in Robotics written by Antonio Bicchi and published by Springer Science & Business Media. This book was released on 2007-07-12 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ?eld of robotics continues to ?ourish and develop. In common with general scienti?c investigation, new ideas and implementations emerge quite spontaneously and these are discussed, used, discarded or subsumed at c- ferences, in the reference journals, as well as through the Internet. After a little more maturity has been acquired by the new concepts, then archival publication as a scienti?c or engineering monograph may occur. The goal of the Springer Tracts in Advanced Robotics is to publish new developments and advances in the ?elds of robotics research – rapidly and informally but with a high quality. It is hoped that prospective authors will welcome the opportunity to publish a structured presentation of some of the emerging robotics methodologies and technologies. The edited volume by Antonio Bicchi, Henrik Christensen and Domenico Prattichizzo is the outcome of the second edition of a workshop jointly sponsored by the IEEE Control Systems Society and the IEEE Robotics and Automation Society. Noticeably, the previous volume was published in the Springer Lecture Notes on Control and Information Sciences. The authors are recognised as leading scholars internationally. A n- ber of challenging control problems on the forefront of today’s research in robotics and automation are covered, with special emphasis on vision, sensory-feedback control, human-centered robotics, manipulation, planning, ?exible and cooperative robots, assembly systems.
Download or read book Probabilistic Robotics written by Sebastian Thrun and published by MIT Press. This book was released on 2005-08-19 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the techniques and algorithms of the newest field in robotics. Probabilistic robotics is a new and growing area in robotics, concerned with perception and control in the face of uncertainty. Building on the field of mathematical statistics, probabilistic robotics endows robots with a new level of robustness in real-world situations. This book introduces the reader to a wealth of techniques and algorithms in the field. All algorithms are based on a single overarching mathematical foundation. Each chapter provides example implementations in pseudo code, detailed mathematical derivations, discussions from a practitioner's perspective, and extensive lists of exercises and class projects. The book's Web site, www.probabilistic-robotics.org, has additional material. The book is relevant for anyone involved in robotic software development and scientific research. It will also be of interest to applied statisticians and engineers dealing with real-world sensor data.
Download or read book Rapid Automation Concepts Methodologies Tools and Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2019-03-01 with total page 1597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through expanded intelligence, the use of robotics has fundamentally transformed the business industry. Providing successful techniques in robotic design allows for increased autonomous mobility, which leads to a greater productivity and production level. Rapid Automation: Concepts, Methodologies, Tools, and Applications provides innovative insights into the state-of-the-art technologies in the design and development of robotics and their real-world applications in business processes. Highlighting a range of topics such as workflow automation tools, human-computer interaction, and swarm robotics, this multi-volume book is ideally designed for computer engineers, business managers, robotic developers, business and IT professionals, academicians, and researchers.