EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Development of Novel Front Contract Pastes for Crystalline Silicon Solar Cells

Download or read book Development of Novel Front Contract Pastes for Crystalline Silicon Solar Cells written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In order to improve the efficiencies of silicon solar cells, paste to silicon contact formation mechanisms must be more thoroughly understood as a function of paste chemistry, wafer properties and firing conditions. Ferro Corporation has been involved in paste development for over 30 years and has extensive expertise in glass and paste formulations. This project has focused on the characterization of the interface between the top contact material (silver paste) and the underlying silicon wafer. It is believed that the interface between the front contact silver and the silicon wafer plays a dominant role in the electrical performance of the solar cell. Development of an improved front contact microstructure depends on the paste chemistry, paste interaction with the SiNx, and silicon ("Si") substrate, silicon sheet resistivity, and the firing profile. Typical front contact ink contains silver metal powders and flakes, glass powder and other inorganic additives suspended in an organic medium of resin and solvent. During fast firing cycles glass melts, wets, corrodes the SiNx layer, and then interacts with underlying Si. Glass chemistry is also a critical factor in the development of an optimum front contact microstructure. Over the course of this project, several fundamental characteristics of the Ag/Si interface were documented, including a higher-than-expected distribution of voids along the interface, which could significantly impact electrical conductivity. Several techniques were also investigated for the interfacial analysis, including STEM, EDS, FIB, EBSD, and ellipsometry.

Book Development of Highly Concentrated Conductive Silver Pastes for Front Side Metallization of Silicon Solar Cells   Their Flow Properties and Printing Behavior

Download or read book Development of Highly Concentrated Conductive Silver Pastes for Front Side Metallization of Silicon Solar Cells Their Flow Properties and Printing Behavior written by Ceren Yüce and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanomaterials for Solar Cell Applications

Download or read book Nanomaterials for Solar Cell Applications written by Sabu Thomas and published by Elsevier. This book was released on 2019-06-12 with total page 761 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanomaterials for Solar Cell Applications provides a review of recent developments in the field of nanomaterials based solar cells. It begins with a discussion of the fundamentals of nanomaterials for solar calls, including a discussion of lifecycle assessments and characterization techniques. Next, it reviews various types of solar cells, i.e., Thin film, Metal-oxide, Nanowire, Nanorod and Nanoporous materials, and more. Other topics covered include a review of quantum dot sensitized and perovskite and polymer nanocomposites-based solar cells. This book is an ideal resource for those working in this evolving field of nanomaterials and renewable energy. - Provides a well-organized approach to the use of nanomaterials for solar cell applications - Discusses the synthesis, characterization and applications of traditional and new material - Includes coverage of emerging nanomaterials, such as graphene, graphene-derivatives and perovskites

Book A Reliable All silver Front Contact for Silicon Solar Cells

Download or read book A Reliable All silver Front Contact for Silicon Solar Cells written by John H. Jr Lamneck and published by . This book was released on 1972 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Formation Mechanism for Printed Silver contacts for Silicon Solar Cells

Download or read book The Formation Mechanism for Printed Silver contacts for Silicon Solar Cells written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Screen-printing provides an economically attractive means for making Ag electrical contacts to Si solar cells, but the use of Ag substantiates a significant manufacturing cost, and the glass frit used in the paste to enable contact formation contains Pb. To achieve optimal electrical performance and to develop pastes with alternative, abundant, and non-toxic materials requires understanding the contact formation process during firing. Here, we use in-situ X-ray diffraction during firing to reveal the reaction sequence. The findings suggest that between 500 degrees C and 650 degrees C PbO in the frit etches the SiNx antireflective-coating on the solar cell, exposing the Si surface. Then, above 650 degrees C, Ag+ dissolves into the molten glass frit -- key for enabling deposition of metallic Ag on the emitter surface and precipitation of Ag nanocrystals within the glass. Ultimately, this work clarifies contact formation mechanisms and suggests approaches for development of inexpensive, nontoxic solar cell contacting pastes.

Book Crystalline Silicon Solar Cells

Download or read book Crystalline Silicon Solar Cells written by Adolf Goetzberger and published by . This book was released on 1998 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Contacts For Crystalline Silicon Solar Cells

Download or read book Advanced Contacts For Crystalline Silicon Solar Cells written by James Bullock and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mainstream dopant-diffused crystalline silicon (c-Si) solar cells have reached a point in their development where losses at the directly-metalized, heavily-doped regions have a significant, and often limiting effect on device performance. The conventional wisdom on addressing this issue is to drastically reduce the percentage of the contacted surface area-to less than 1% in some cases-significantly increasing the complexity of fabrication. An alternative approach is to focus on addressing the losses at the metal / cSi interface by implementing novel 'carrier-selective' contacting structures. This approach to solar cell contacting has the potential to increase the output power whilst significantly simplifying cell architectures and fabrication procedures. This thesis is centered on the conceptual and experimental development of a number of advanced contacting structures for c-Si solar cells, collectively referred to here as 'heterocontacts'. The 'carrier-selectivity' of the contact, that is, how well it collects just one of the two carriers (whilst preserving the other), is used as a universal concept for comparing different contacting strategies, including mainstream contacts based on direct metallization of heavily doped c-Si. To provide a foundation on this topic the initial section of the thesis discusses the concept and theory of carrier-selectivity. This is complemented with an in depth literature review of current state-of-the-art contacting practices for c-Si solar cells. This provides a reference frame with which to compare the three experimental chapters that follow. In the first experimental chapter it is shown that a suitable initial stepping stone towards advancing solar c-Si cell contacts is to combine the benefits of conventional dopant-diffused regions with those of heterocontacts. A number of such hybrid systems are demonstrated and optimized at the contact level through multiple dedicated studies focused on using thin silicon oxide (SiOx), aluminum oxide (AlOx) or hydrogenated amorphous silicon (a-Si:H) passivating interlayers. These interlayers are shown to reduce carrier recombination at the contact surface by up to two orders of magnitude. In a later study we develop and demonstrate a novel a-Si:H enhanced Al / SiOx / c-Si(n+) heterocontact concept. This structure is also explored at the solar cell level, yielding an efficiency of 21% in the initial stages of development - equivalent to that of an analogous cell made with the conventional directly metallized partial contact technique. In the succeeding chapter, the logical next stage in the development of such a concept is explored, that is, to completely remove the heavily doped surface regions, instead using the heterocontacts exclusively to separate electrons and holes. It is demonstrated that this can be achieved using materials with extreme work functions. For the collection of holes, sub-stoichiometric molybdenum oxide MoOx is utilized, favored for its transparency and large work function. Over multiple studies, it is demonstrated that MoOx heterocontact systems, both with and without passivating interlayers can be used to effectively collect holes on both n and p-type c-Si absorbers. This enables its application to a number of novel solar cells architectures, most prominently a novel MoOx partial rear contact cell attaining conversion efficiencies over 20% in the initial proof-ofconcept stage. In the final experimental chapter, a complementary electron heterocontact system is developed, based on a low work function LiFx / Al electrode. This is shown to provide ix excellent electron collection characteristics, both with and without a-Si:H passivating interlayers. The exceptional contact characteristics enabled by this heterocontact allow the demonstration of a first-of-its-kind n-type partial rear contact cell already with an efficiency above 20% in its first demonstration. To conclude the thesis and demonstrate its premise, a novel c-Si cell is developed without the use of dopants. This cell, referred to as the dopant free asymmetric heterocontact (DASH) cell, combines the previously mentioned MoOx based hole contacts and LiFx based electron heterocontacts, both with passivating a-Si:H interlayers. A conversion efficiency of 19.4% is attained for this proof-of-concept device - an improvement by more than 5 percent absolute from the previous DASH cell record and more importantly the first demonstration of such a concept to be competitive with conventional cell designs.

Book Silicon Heterojunction Solar Cells

Download or read book Silicon Heterojunction Solar Cells written by W.R. Fahrner and published by Trans Tech Publications Ltd. This book was released on 2006-08-15 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made to reduce the production costs of “conventional” solar cells (manufactured from monocrystalline silicon using diffusion methods) by instead using cheaper grades of silicon, and simpler pn-junction fabrication. That is the ‘hero’ of this book; the heterojunction solar cell.

Book 2016 IEEE 43rd Photovoltaic Specialists Conference  PVSC

Download or read book 2016 IEEE 43rd Photovoltaic Specialists Conference PVSC written by IEEE Staff and published by . This book was released on 2016-06-05 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: scientific and engineering technical conference covering all aspects of photovoltaics materials, devices, systems and reliability

Book Solar Cells and Modules

    Book Details:
  • Author : Arvind Shah
  • Publisher : Springer Nature
  • Release : 2020-07-16
  • ISBN : 3030464873
  • Pages : 357 pages

Download or read book Solar Cells and Modules written by Arvind Shah and published by Springer Nature. This book was released on 2020-07-16 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a comprehensive introduction to the field of photovoltaic (PV) solar cells and modules. In thirteen chapters, it addresses a wide range of topics including the spectrum of light received by PV devices, the basic functioning of a solar cell, and the physical factors limiting the efficiency of solar cells. It places particular emphasis on crystalline silicon solar cells and modules, which constitute today more than 90 % of all modules sold worldwide. Describing in great detail both the manufacturing process and resulting module performance, the book also touches on the newest developments in this sector, such as Tunnel Oxide Passivated Contact (TOPCON) and heterojunction modules, while dedicating a major chapter to general questions of module design and fabrication. Overall, it presents the essential theoretical and practical concepts of PV solar cells and modules in an easy-to-understand manner and discusses current challenges facing the global research and development community.

Book Thin Film Solar Cells

    Book Details:
  • Author : Jef Poortmans
  • Publisher : John Wiley & Sons
  • Release : 2006-10-16
  • ISBN : 0470091266
  • Pages : 504 pages

Download or read book Thin Film Solar Cells written by Jef Poortmans and published by John Wiley & Sons. This book was released on 2006-10-16 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin-film solar cells are either emerging or about to emerge from the research laboratory to become commercially available devices finding practical various applications. Currently no textbook outlining the basic theoretical background, methods of fabrication and applications currently exist. Thus, this book aims to present for the first time an in-depth overview of this topic covering a broad range of thin-film solar cell technologies including both organic and inorganic materials, presented in a systematic fashion, by the scientific leaders in the respective domains. It covers a broad range of related topics, from physical principles to design, fabrication, characterization, and applications of novel photovoltaic devices.

Book Recent Developments in Photovoltaic Materials and Devices

Download or read book Recent Developments in Photovoltaic Materials and Devices written by Natarajan Prabaharan and published by BoD – Books on Demand. This book was released on 2019-02-13 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the recent advances in solar photovoltaic materials and their innovative applications. Many problems in material science are explored for enhancing the understanding of solar cells and the development of more efficient, less costly, and more stable cells. This book is crucial and relevant at this juncture and provides a historical overview focusing primarily on the exciting developments in the last decade. This book primarily covers the different Maximum Power Point Tracking control techniques that have led to the improved speed of response of solar photovoltaics, augmented search accuracy, and superior control in the presence of perturbations such as sudden variations in illumination and temperature. Furthermore, the optimal design of a photovoltaic system based on two different approaches such as consumed power and economics is discussed.

Book New Concepts for Front Side Metallization of Industrial Silicon Solar Cells

Download or read book New Concepts for Front Side Metallization of Industrial Silicon Solar Cells written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This work focuses on the optimization of the front side metallization process of industrial silicon solar cells. Since the state-of-the-art screen-printed contact has some well-known limitations, as a high contact resistance, a low lateral conductance and a low aspect ratio (height : width), alternative metallization technologies suitable for a one-layer grid structure of solar cells were reviewed. These include stencil-printing, pad-printing, ink-jet printing and dispensing. However, none of these technologies fulfills all the demands of a high-efficiency contact. Thus in this work the development of new concepts for the front side metallization was based on the two-layer contact structure. This structure has the advantage that every layer can be optimized individually. The requirement for the first layer is a small contact width, a low contact resistance, a sufficient adhesion to the underlying silicon surface as well as a good adhesion to the metal of the second layer. The task of the second layer is to collect the current from the first one, so its critical parameter is high line conductivity. Due to its major importance in the state-of-the-art industrial production, screen-printing was investigated as a reference process. The front side screen-printing process could be optimized by using hotmelt silver paste. Despite the different composition of the hotmelt compared to conventional paste, the rheology and hence the printability of the paste behaves similarly at elevated temperatures. The advantage of screen-printing hotmelt paste is the achievement of relatively high finger aspect ratios (1:3-1:4). Efficiencies of 18.0% on 12.5x12.5 cm2 Cz-silicon with an Al-BSF were obtained. Light-induced plating is used for the high-efficiency process in order to form the second layer of the proposed two-layer contact structure. Theoretical as well as experimental investigations allowed a profound understanding of the chemical reaction in the bath and optimum plating conditi.