EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Development of an Effective System Identification and Control Capability for Quad copter UAVs

Download or read book Development of an Effective System Identification and Control Capability for Quad copter UAVs written by Wei Wei and published by . This book was released on 2015 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, with the promise of extensive commercial applications, the popularity of Unmanned Aerial Vehicles (UAVs) has dramatically increased as witnessed by publications and mushrooming research and educational programs. Over the years, multi-copter aircraft have been chosen as a viable configuration for small-scale VTOL UAVs in the form of quad-copters, hexa-copters and octo-copters. Compared to the single main rotor configuration such as the conventional helicopter, multi-copter airframes require a simpler feedback control system and fewer mechanical parts. These characteristics make these UAV platforms, such as quad-copter which is the main emphasis in this dissertation, a rugged and competitive candidate for many applications in both military and civil areas. Because of its configuration and relative size, the small-scale quad-copter UAV system is inherently very unstable. In order to develop an effective control system through simulation techniques, obtaining an accurate dynamic model of a given quad-copter is imperative. Moreover, given the anticipated stringent safety requirements, fault tolerance will be a crucial component of UAV certification. Accurate dynamic modeling and control of this class of UAV is an enabling technology and is imperative for future commercial applications. In this work, the dynamic model of a quad-copter system in hover flight was identified using frequency-domain system identification techniques. A new and unique experimental system, data acquisition and processing procedure was developed catering specifically to the class of electric powered multi-copter UAV systems. The Comprehensive Identification from FrEquency Responses (CIFER®) software package, developed by US Army Aviation Development Directorate - AFDD, was utilized along with flight tests to develop dynamic models of the quad-copter system. A new set of flight tests were conducted and the predictive capability of the dynamic models were successfully validated. A PID controller and two fuzzy logic controllers were developed based on the validated dynamic models. The controller performances were evaluated and compared in both simulation environment and flight testing. Flight controllers were optimized to comply with US Aeronautical Design Standard Performance Specification Handling Quality Requirements for Military Rotorcraft (ADS-33E-PRF). Results showed a substantial improvement for developed controllers when compared to the nominal controllers based on hand tuning. The scope of this research involves experimental system hardware and software development, flight instrumentation, flight testing, dynamics modeling, system identification, dynamic model validation, control system modeling using PID and fuzzy logic, analysis of handling qualities, flight control optimization and validation. Both closed-loop and open-loop dynamics of the quad-copter system were analyzed. A cost-effective and high quality system identification procedure was applied and results proved in simulations as well as in flight tests.

Book Multi rotor Platform Based UAV Systems

Download or read book Multi rotor Platform Based UAV Systems written by Franck Cazaurang and published by ISTE Press - Elsevier. This book was released on 2020-03-17 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-rotor Platform Based UAV Systems provides an excellent opportunity for experiential learning, capability augmentation and confidence-building for senior level undergraduates, entry-level graduates, engineers working in government agencies, and industry involved in UAV R&D. Topics in this book include an introduction to VTOL multi-copter UAV platforms, UAV system architecture, integration in the national airspace, including UAV classification and associated missions, regulation and safety, certification and air traffic management, integrated mission planning, including autonomous fault tolerant path planning and vision based auto landing systems, flight mechanics and stability, dynamic modeling and flight controller development. Other topics covered include sense, detect and avoid systems, flight testing, including safety assessment instrumentation and data acquisition telemetry, synchronization data fusion, the geo-location of identified targets, and much more. Provides an excellent opportunity for experiential learning, capability augmentation and confidence building for senior level undergraduates, entry-level graduates and engineers working in government, and industry involved in UAV R&D Includes MATLAB/SIMULINK computational tools and off-the-shelf hardware implementation tutorials Offers a student centered approach Provides a quick and efficient means to conceptualize, design, synthesize and analyze using modeling and simulations Offers international perspective and appeal for engineering students and professionals

Book Some results on closed loop identification of quadcopters

Download or read book Some results on closed loop identification of quadcopters written by Du Ho and published by Linköping University Electronic Press. This book was released on 2018-11-21 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, the quadcopter has become a popular platform both in research activities and in industrial development. Its success is due to its increased performance and capabilities, where modeling and control synthesis play essential roles. These techniques have been used for stabilizing the quadcopter in different flight conditions such as hovering and climbing. The performance of the control system depends on parameters of the quadcopter which are often unknown and need to be estimated. The common approach to determine such parameters is to rely on accurate measurements from external sources, i.e., a motion capture system. In this work, only measurements from low-cost onboard sensors are used. This approach and the fact that the measurements are collected in closed-loop present additional challenges. First, a general overview of the quadcopter is given and a detailed dynamic model is presented, taking into account intricate aerodynamic phenomena. By projecting this model onto the vertical axis, a nonlinear vertical submodel of the quadcopter is obtained. The Instrumental Variable (IV) method is used to estimate the parameters of the submodel using real data. The result shows that adding an extra term in the thrust equation is essential. In a second contribution, a sensor-to-sensor estimation problem is studied, where only measurements from an onboard Inertial Measurement Unit (IMU) are used. The roll submodel is derived by linearizing the general model of the quadcopter along its main frame. A comparison is carried out based on simulated and experimental data. It shows that the IV method provides accurate estimates of the parameters of the roll submodel whereas some other common approaches are not able to do this. In a sensor-to-sensor modeling approach, it is sometimes not obvious which signals to select as input and output. In this case, several common methods give different results when estimating the forward and inverse models. However, it is shown that the IV method will give identical results when estimating the forward and inverse models of a single-input single-output (SISO) system using finite data. Furthermore, this result is illustrated experimentally when the goal is to determine the center of gravity of a quadcopter.

Book Frequency Domain System Identification for Unmanned Helicopters from Flight Data

Download or read book Frequency Domain System Identification for Unmanned Helicopters from Flight Data written by Mohammadhossein Mohajerani and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Robust Nonlinear Control Approaches for Quadrotor Unmanned Aerial Vehicle

Download or read book Advanced Robust Nonlinear Control Approaches for Quadrotor Unmanned Aerial Vehicle written by Moussa Labbadi and published by Springer Nature. This book was released on 2021-09-14 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies selected advanced flight control schemes for an uncertain quadrotor unmanned aerial vehicle (UAV) systems in the presence of constant external disturbances, parametric uncertainties, measurement noise, time-varying external disturbances, and random external disturbances. Furthermore, in all the control techniques proposed in this book, it includes the simulation results with comparison to other nonlinear control schemes recently developed for the tracking control of a quadrotor UAV. The main contributions of the present book for quadrotor UAV systems are as follows: (i) the proposed control methods are based on the high-order sliding mode controller (SMC) and hybrid control algorithm with an optimization method. (ii) the finite-time control schemes are developed by using fast terminal SMC (FTSMC), nonsingular FTSMC (NFTSMC), global time-varying SMC, and adaptive laws. (iii) the fractional-order flight control schemes are developed by using the fractional-order calculus theory, super twisting algorithm, NFTSMC, and the SMC. This book covers the research history and importance of quadrotor system subject to system uncertainties, external wind disturbances, and noise measurements, as well as the research status of advanced flight control methods, adaptive flight control methods, and flight control based on fractional-order theory. The book would be interesting to most academic undergraduate, postgraduates, researchers on flight control for drones and applications of advanced controllers in engineering field. This book presents a must-survey for advanced finite-time control for quadrotor system. Some parts of this book have the potential of becoming the courses for the modelling and control of autonomous flying machines. Readers (academic researcher, undergraduate student, postgraduate student, MBA/executive, and education practitioner) interested in nonlinear control methods find this book an investigation. This book can be used as a good reference for the academic research on the control theory, drones, terminal sliding mode control, and related to this or used in Ph.D. study of control theory and their application in field engineering.

Book Global Hawk Systems Engineering Case Study   Report on UAV Drone Technical Information  Program History  Development and Production  Flight Testing   Unmanned Aerial System  UAS

Download or read book Global Hawk Systems Engineering Case Study Report on UAV Drone Technical Information Program History Development and Production Flight Testing Unmanned Aerial System UAS written by U. S. Military and published by . This book was released on 2017-09-19 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is one of a series of systems engineering case studies prepared by the Air Force Center for Systems Engineering. This case study analyzes the Global Hawk Unmanned Aerial Vehicle (UAV). The Global Hawk is an advanced intelligence, surveillance, and reconnaissance air system composed of a high-altitude, long-endurance unmanned air vehicle (UAV) and a common ground segment (CGS) for command, control, and data collection. Its primary mission is to provide overt, continuous, long-endurance, all-weather, day/night, and near-real-time, wide-area reconnaissance and surveillance. The air vehicle is coupled with an integrated ground-based Mission Control Element (MCE) and Launch and Recovery Element (LRE) that monitors autonomous flight and facilitates-aided control of the air vehicle, when required. The Global Hawk system consists of the aircraft, payloads, data links, ground stations, and logistics support package. The ground stations have the ability to provide command and control (C2) of up to three vehicles and at least one air vehicle payload from a single ground station. The study provides a wealth of technical information about the aircraft and its complex history. The Department of Defense is exponentially increasing the acquisition of joint complex systems that deliver needed capabilities demanded by our warfighter. Systems engineering is the technical and technical management process that focuses explicitly on delivering and sustaining robust, high-quality, affordable solutions. The Air Force leadership has collectively stated the need to mature a sound systems engineering process throughout the Air Force. Gaining an understanding of the past and distilling learning principles that are then shared with others through our formal education and practitioner support are critical to achieving continuous improvement. These cases support academic instruction on SE within military service academies, civilian and military graduate schools, industry continuing education programs, and those practicing SE in the field. Each of the case studies is comprised of elements of success as well as examples of SE decisions that, in hindsight, were not optimal. Both types of examples are useful for learning. Along with discovering historical facts, we have conducted key interviews with program managers and chief engineers, both within the government and those working for the various prime and subcontractors. From this information, we have concluded that the discipline needed to implement SE and the political and acquisition environment surrounding programs continue to challenge our ability to provide balanced technical solutions. Chapter 1. SYSTEMS ENGINEERING PRINCIPLES * 1.1 GENERAL SYSTEMS ENGINEERING PROCESS * 1.1.1 Introduction * 1.1.2 Evolving Systems Engineering Process * 1.1.3 Case Studies * 1.1.4 Framework for Analysis * 1.2 GLOBAL HAWK MAJOR LEARNING PRINCIPLES AND FRIEDMAN-SAGE MATRIX * Chapter 2. GLOBAL HAWK DESCRIPTIONS * 2.1 MISSION * 2.2 GLOBAL HAWK SYSTEM * 2.2.1 Air Vehicle * 2.2.2 Common Ground Segment * 2.2.3 Support Segment * Chapter 3. GLOBAL HAWK PROGRAM * 3.1 HISTORICAL BACKGROUND * 3 .2 ADVANCED CONCEPT TECHNOLOGY DEVELOPMENT (ACTD) PHASE * 3.2.1 Original Acquisition Strategy * 3.2.2 Phase I * 3.2.3 Phase II * 3.2.4 Phase III * 3.2.5 Phase IV * 3.2.6 Summary of ACTD * 3.2.7 Collier Trophy * 3.3 ENGINEERING AND MANUFACTURING DEVELOPMENT (EMD)/PRODUCTION PHASE * 3.3.1 EMD * 3.3.2 Production * 3.3.3 Supporting Contractors * 3.3.4 Australian Deployment * 3.3.5 Combat Deployments to Southwest Asia * 3.3.6 Combat Losses * 3.3.7 Spiral 2 * 3.3.8 Organizational Structure * 3.3.9 Navy Global Hawk * 3.3.10 Production Lots 2 and 3 * 3.3.11 German Demonstration * 3.3.12 Block 10 Flight Test * 3.3.13 Airworthiness Certification of Block 10 * 3.3.14 Nunn-McCurdy Breach and Recertification * Chapter 4. SUMMARY * Chapter 5. REFERENCES * 6. APPENDICES

Book Embedded Platforms for UAS Landing Path and Obstacle Detection

Download or read book Embedded Platforms for UAS Landing Path and Obstacle Detection written by Umberto Papa and published by Springer. This book was released on 2018-01-05 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reports on the design and development of a system that assists remote pilots during the landing procedure. In particular, it covers a previously neglected topic, namely the search for the best pathway and landing site. It describes the system’s components, such as the ultrasonic sensor, infrared sensor and optical sensor, in detail, and discusses the experimental tests carried out in both controlled laboratory and real-world environments. Providing a fascinating survey of the state of the art in the field of unmanned aircraft system electronics design and development, the book also presents recent advances in and cutting-edge methodologies for the development of acquisition systems and inexpensive sensor design for navigation data.

Book System Identification and Model based Control of Quadcopter UAVs

Download or read book System Identification and Model based Control of Quadcopter UAVs written by Andrew P. Szabo and published by . This book was released on 2019 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt: As control systems become more sophisticated, more accurate system models are needed for control law design and simulation. In this research, a nonlinear dynamic model of a quadcopter UAV is presented and model parameters are estimated off-line using in-flight experimental data. In addition, a model-based classical control law for the quadcopter UAV is designed, simulated, and then deployed in UAV flight tests. The intent of this research is to identify a model which may be simple enough to easily use for control law design, and accurate enough for simulation. In addition, a model-based classical control law is designed to for flight control. The parameters of the nonlinear dynamic model are estimated with the Linear Least Squares Error method. In-flight disturbances are introduced in flight tests to ensure frequency rich data. The performances of different models are compared using validation flight test data to select an accurate model. This model is used as the simulation model and the design model. Model-based control law design techniques are used to create a flight control law which provides good performance both in the simulator, as well as when deployed to the quadcopter. To perform these tests, the Real-Time - Marseille Grenoble Project software is used for the creation of ground station programs and flight control algorithms in Simulink. This test environment integrates a VICON camera systems, QuaRC Real Time system, a 3DR APM 2.6 micro-controller unit, and a Gumstix Overo AirSTORM micro-controller unit to create a low-cost quadcopter research platform.

Book Modeling  Identification  and Control for Cyber  Physical Systems Towards Industry 4 0

Download or read book Modeling Identification and Control for Cyber Physical Systems Towards Industry 4 0 written by Paolo Mercorelli and published by Elsevier. This book was released on 2024-01-19 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling, Identification, and Control for Cyber-Physical Systems Towards Industry 4.0 studies and analyzes the role of algorithms in identifying and controlling such a system towards Industry 4.0, which is the digital transformation of manufacturing and related industries and value creation processes. This book focuses on the conception and implementation of intelligent algorithms. It will help readers who work on sensors, virtual sensors, actuators and virtual actuators embedded systems, network infrastructures, servers with computing and storage capacity, autonomous computing software, real-time data processing, and database graphical user interfaces wireless networking technologies. Cyber-Physical Systems are network components that coordinate physical actions with each other. These autonomous systems perceive their surroundings using virtual sensors and actively influence them via virtual actuators. Adaptable and continuously evolving, these systems free up skilled workers to perform complex tasks, avoiding productivity loss and re-work. Provides the new and cutting-edge research and development and a series of guidance procedures for potential applications from academic research to industrial R&D Focuses on the conception and implementation of intelligent algorithms Covers a wide spectrum of topics, including sensors, virtual sensors, actuators and virtual actuators embedded systems, network infrastructures, servers with computing and storage capacity, autonomous computing software, real-time data processing, and database graphical user interfaces wireless networking technologies

Book Flight Formation Control

Download or read book Flight Formation Control written by Josep M. Guerrero and published by John Wiley & Sons. This book was released on 2012-12-17 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last decade the development and control of Unmanned Aerial Vehicles (UAVs) has attracted a lot of interest. Both researchers and companies have a growing interest in improving this type of vehicle given their many civilian and military applications. This book presents the state of the art in the area of UAV Flight Formation. The coordination and robust consensus approaches are presented in detail as well as formation flight control strategies which are validated in experimental platforms. It aims at helping students and academics alike to better understand what coordination and flight formation control can make possible. Several novel methods are presented: - controllability and observability of multi-agent systems; - robust consensus; - flight formation control; - stability of formations over noisy networks; which generate solutions of guaranteed performance for UAV Flight Formation. Contents 1. Introduction, J.A. Guerrero. 2. Theoretical Preliminaries, J.A. Guerrero. 3. Multiagent Coordination Strategies, J.A. Guerrero, R. Lozano, M.W. Spong, N. Chopra. 4. Robust Control Design for Multiagent Systems with Parametric Uncertainty, J.A. Guerrero, G. Romero. 5. On Adaptive and Robust Controlled Synchronization of Networked Robotic Systems on Strongly Connected Graphs, Y.-C. Liu, N. Chopra. 6. Modeling and Control of Mini UAV, G. Flores Colunga, J.A. Guerrero, J. Escareño, R. Lozano. 7. Flight Formation Control Strategies for Mini UAVs, J.A. Guerrero. 8. Formation Based on Potential Functions, L. García, A. Dzul. 9. Quadrotor Vision-Based Control, J.E. Gomez-Balderas, J.A. Guerrero, S. SALAZAR, R. Lozano, P. Castillo. 10. Toward Vision-Based Coordination of Quadrotor Platoons, L.R. García Carrillo, J.A. Guerrero, R. Lozano. 11. Optimal Guidance for Rotorcraft Platoon Formation Flying in Wind Fields, J.A. Guerrero, Y. Bestaoui, R. Lozano. 12. Impact of Wireless Medium Access Protocol on the Quadrotor Formation Control, J.A. Guerrero, Y. Challal, P. Castillo. 13. MAC Protocol for Wireless Communications, A. Mendez, M. Panduro, O. Elizarraras, D. Covarrubias. 14. Optimization of a Scannable Pattern for Bidimensional Antenna Arrays to Provide Maximum Performance, A. Reyna, M.A. Panduro, A. Mendez.

Book Localization and System Identification of a Quadcopter UAV

Download or read book Localization and System Identification of a Quadcopter UAV written by Kenneth Befus and published by . This book was released on 2014 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: The research conducted explores the comparison of several trilateration algorithms as they apply to the localization of a quadcopter micro air vehicle. A localization system is developed employing a network of combined ultrasonic radio frequency sensors used to wirelessly provide range measurements defining the location of the quadcopter in three dimensional space. A Monte Carlo simulation is conducted using the extrinsic parameters of the localization system to evaluate the adequacy of each trilateration method as it applies to this specific quadcopter application. The optimal position calculation method is determined. Furthermore, flight testing is performed in which real range measurement data are collected for the purpose of post processing and evaluation of the quadcopter's high level open loop response to three basic inputs: pitch and roll, thrust, and yaw rate. The raw range measurement data allow for the calculation of position data that are then brought into the System Identification Toolbox environment within Matlab. This tool is then used to generate best fit transfer functions for each of the aforementioned dynamic responses.

Book UAV or Drones for Remote Sensing Applications

Download or read book UAV or Drones for Remote Sensing Applications written by Felipe Gonzalez Toro and published by MDPI. This book was released on 2018-11-23 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "UAV or Drones for Remote Sensing Applications" that was published in Sensors

Book Development and Future of Internet of Drones  IoD   Insights  Trends and Road Ahead

Download or read book Development and Future of Internet of Drones IoD Insights Trends and Road Ahead written by Rajalakshmi Krishnamurthi and published by Springer Nature. This book was released on 2021-02-15 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a clear insight about IoD and its requirements, protocols, performance improvement, evaluation methods and challenging aspects, to the readers at one place. The recent enhancement of integrating drone with the Internet of things (IoT) technology promises tremendous global development. The top applications of the Internet of Drones (IoD) are expected to be infrastructure & building monitoring, fire service systems, insurance investigations, retail fulfilment, agriculture and forensic evidence collections. Conventional drone technology is enhanced with the Internet and other emerging technologies such as cloud computing, big data, artificial intelligence and communication networks which open up for enormous opportunities like ahead for on-demand service-oriented and user-friendly IoD applications. This book presents extensive knowledge about the role of IoT and emerging technology in drone networks. It focuses on major research areas of the Internet of Drones and its related applications. It provides a strong knowledge platform towards the Internet of Drones for graduates, researchers, data scientists, educators and drone hobbyists.

Book Robust Discrete Time Flight Control of UAV with External Disturbances

Download or read book Robust Discrete Time Flight Control of UAV with External Disturbances written by Shuyi Shao and published by Springer Nature. This book was released on 2020-09-26 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies selected discrete-time flight control schemes for fixed-wing unmanned aerial vehicle (UAV) systems in the presence of system uncertainties, external disturbances and input saturation. The main contributions of this book for UAV systems are as follows: (i) the proposed integer-order discrete-time control schemes are based on the designed discrete-time disturbance observers (DTDOs) and the neural network (NN); and (ii) the fractional-order discrete-time control schemes are developed by using the fractional-order calculus theory, the NN and the DTDOs. The book offers readers a good understanding of how to establish discrete-time tracking control schemes for fixed-wing UAV systems subject to system uncertainties, external wind disturbances and input saturation. It represents a valuable reference guide for academic research on uncertain UAV systems, and can also support advanced / Ph.D. studies on control theory and engineering.

Book An Optimum Vision Based Control of Rotorcrafts Case Studies

Download or read book An Optimum Vision Based Control of Rotorcrafts Case Studies written by Maryam Alizadeh and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Embedded Platforms for UAS Landing Path and Obstacle Detection II

Download or read book Embedded Platforms for UAS Landing Path and Obstacle Detection II written by Gennaro Ariante and published by Springer Nature. This book was released on with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quad Rotorcraft Control

Download or read book Quad Rotorcraft Control written by Luis Rodolfo García Carrillo and published by Springer Science & Business Media. This book was released on 2012-08-12 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quad Rotorcraft Control develops original control methods for the navigation and hovering flight of an autonomous mini-quad-rotor robotic helicopter. These methods use an imaging system and a combination of inertial and altitude sensors to localize and guide the movement of the unmanned aerial vehicle relative to its immediate environment. The history, classification and applications of UAVs are introduced, followed by a description of modelling techniques for quad-rotors and the experimental platform itself. A control strategy for the improvement of attitude stabilization in quad-rotors is then proposed and tested in real-time experiments. The strategy, based on the use low-cost components and with experimentally-established robustness, avoids drift in the UAV’s angular position by the addition of an internal control loop to each electronic speed controller ensuring that, during hovering flight, all four motors turn at almost the same speed. The quad-rotor’s Euler angles being very close to the origin, other sensors like GPS or image-sensing equipment can be incorporated to perform autonomous positioning or trajectory-tracking tasks. Two vision-based strategies, each designed to deal with a specific kind of mission, are introduced and separately tested. The first stabilizes the quad-rotor over a landing pad on the ground; it extracts the 3-dimensional position using homography estimation and derives translational velocity by optical flow calculation. The second combines colour-extraction and line-detection algorithms to control the quad-rotor’s 3-dimensional position and achieves forward velocity regulation during a road-following task. In order to estimate the translational-dynamical characteristics of the quad-rotor (relative position and translational velocity) as they evolve within a building or other unstructured, GPS-deprived environment, imaging, inertial and altitude sensors are combined in a state observer. The text give the reader a current view of the problems encountered in UAV control, specifically those relating to quad-rotor flying machines and it will interest researchers and graduate students working in that field. The vision-based control strategies presented help the reader to a better understanding of how an imaging system can be used to obtain the information required for performance of the hovering and navigation tasks ubiquitous in rotored UAV operation.